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Formany decades, experimental solidmechanics has played a crucial role in characterizing
and understanding the mechanical properties of natural and novel artificial materials.
Recent advances inmachine learning (ML) provide new opportunities for the field, including
experimental design, data analysis, uncertainty quantification, and inverse problems. As the
number of papers published in recent years in this emerging field is growing exponentially, it
is timely to conduct a comprehensive and up-to-date review of recent ML applications in
experimental solid mechanics. Here, we first provide an overview of commonML algorithms
and terminologies that are pertinent to this review, with emphasis placed on physics-
informed and physics-basedMLmethods. Then, we provide thorough coverage of recentML
applications in traditional and emerging areas of experimental mechanics, including
fracture mechanics, biomechanics, nano- and micromechanics, architected materials, and
two-dimensional materials. Finally, we highlight some current challenges of applyingML to
multimodality and multifidelity experimental datasets, quantifying the uncertainty of ML
predictions, and proposing several future research directions. This review aims to provide
valuable insights into the use of ML methods and a variety of examples for researchers in
solid mechanics to integrate into their experiments. [DOI: 10.1115/1.4062966]
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1 Introduction

Over the years, the field of experimental solid mechanics has kept
evolving because of the continuous demand to characterize and
understand the mechanical properties of natural and novel artificial
metamaterials and structures [1,2]. There are two primary
motivations for performing experiments in solid mechanics: (1) to
provide experimental observations that can be used to advance
universal mechanics laws; (2) to measure unknown mechanical
properties of materials and structures, e.g., stiffness, strength, phase
changes, inelasticity, damage, and fracture, under prescribed
boundary or loading conditions. Measured fields and properties
guide the construction of constitutive laws and interpretation of
underlying physics. Throughout the history of experimental solid
mechanics, various apparatuses have been invented to measure
mechanical properties, from quasi-static testing (e.g., the universal
tensile testing machine [3]) to high strain-rate testing (e.g., Kolsky
bars [4] and plate impact facility [5,6]). In the past two decades,
advances in nanomechanics tools like the nano-indenter and micro-

electromechanical systems (MEMS) for in situ microscopy testing
[7,8] have enabled nanoscale characterization of advancedmaterials
[9–11]. Likewise, various experimental measurement techniques
have been developed, from local methods, e.g., strain gages and
displacement transducers [12], to full-field methods, such as high-
resolution and high-speed imaging systems [13]. These technical
innovations provide an extensive and ever-increasing amount of
data collected during a single experiment. To analyze data from full-
field measurement, new analysis techniques such as Moir�e
interferometry [14], digital image/volume correlations (DIC/
DVC) [15,16], and electronic speckle pattern interferometry [17]
have been developed to extract mechanical properties and
deformation fields from experiments. Furthermore, inversemethods
have been used to extract constitutive behavior and identify
imperfections [18,19]. Indeed, the combination of experimental
mechanicswith fast and robust computational algorithms for inverse
analysis has been growing in importance since it enables new
approaches to mechanical property identification, from fracture
properties under extreme conditions to anisotropic properties of
biological tissues to superior mechanical properties of nano-
architected and two-dimensional (2D) materials.
Recently, the concept of materials by design [20] has been

advanced for the design of multifunctional architected materials
[21] and 2D materials/devices [22,23] exhibiting unprecedented
performance. Such progress was possible due to the rapid
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development of modern experimental mechanics techniques, which
include fabrication processes, e.g., additive manufacturing (AM)
[24], chemical vapor deposition, as well as the development of high-
throughput testing methodologies [25–27]. In such research
strategy, experimental solid mechanics plays an essential role in
providing valuable training and validation of experimental data for
extracting physically inspired reduced-order models as well as
advancing understanding of fabrication process-mechanical prop-
erty relationships. Therefore, combining novel and intelligent
algorithms together with advances in fabrication and experimental
characterization methods has the potential to achieve a paradigm
shift in discovering multifunctional and architected materials and
structures.
Recent advances in machine learning (ML) [28], in particular,

deep learning (DL) [29], offer the opportunity to expand the field of
experimental solid mechanics when combined with rapid data
processing and inverse approaches. ML has played a significant role
in computer science applications and technologies like computer
vision [30], natural language processing [31], and self-driving cars
[32]. In engineering and applied physics disciplines, ML has been
widely used in various areas of materials science, includingmaterial
microstructure design [33],microscopic imaging detection [34], and
force-field development [35]. Several comprehensive reviews
[36–40] have thoroughly surveyed the potential of ML in materials
science. In solid mechanics, ML has been successfully employed in
a wide range of applications, such as constructing surrogate models
for constitutive modeling [41,42], advancing multiscale modeling
[43,44], designing architected materials [45], extracting unknown
mechanical parameters [46], or obtaining the internal material
information from externally measured fields [47–49]. In these
applications, most ML frameworks were trained on synthetic data
from computational methods. Therefore, applying these ML
frameworks to train and validate sparse and noisy experimental
data with high fidelity and modality require cautious quantification
of uncertainty [50,51], from both experimental data and ML
architectures like hyperparameters, optimization method, and
overparameterization. For this purpose, uncertainty quantification
methods like Bayesian methods and deep ensembles can be
employed. Moreover, employing ML in the experimental design
data process could not only potentially identify material properties,
which could not be revealed otherwise, but also inspire experimen-
talists to develop new experimental techniques with metrology
capable of big-data generation with high information content. With
broad community interest, as reflected by the increasing number of
publications in this field, it is timely to conduct a contemporary and
thorough review of recent advances in the use ofML in experimental
solid mechanics. Though this review will be focused on experi-
mental aspects, multidisciplinary approaches, including computa-
tional and theoretical mechanics, as well as materials science, are
needed to address engineering applications.
This review is dedicated to Prof. Kyung-Suk Kim, on his 70 s

birthday, to celebrate his seminal contributions to the fields of
experimental and theoretical mechanics. The review is planned as
follows. In Sec. 2, we will briefly review some key ML algorithms
that can be employed in experimentalmechanics. Then, in Sec. 3,we
will review some recent progress of ML applications in experimen-
tal solid mechanics, covering the broad areas of fracture mechanics,
biomechanics, nano- andmicromechanics,mechanics of architected
materials, and fracture toughness of 2D materials. In Sec. 4, we will
discuss how to properly select ML models for experimental data
with multifidelity and multimodality. We will also discuss possible
solutions to estimate and reduce ML uncertainty. Finally, in Sec. 5,
we will close our review with a discussion of potential future
research directions. Please note that ML has also been extensively
applied to AM and full-field optical measurement, which are two
other important fields in experimental solid mechanics. Since
extensive state-of-the-art reviews have been conducted in these two
fields (see Refs. [52–54] for AM and Ref. [55] for full-field optical
measurement), we will not cover these topics extensively in this
review.

2 Machine Learning Framework for Experimental

Solid Mechanics

Machine learning methods use algorithms mimicking human
intelligence to perform optimization tasks for particular goals [28].
Since the early development of neural networks (NNs) and back-
propagation algorithms [56] in the 1980s, the research field in ML
has evolved significantly, leading to the discovery of various
network architectures with distinct operational principles. There-
fore, before applying these ML algorithms to experimental solid
mechanics, it is crucial to understand their architectures, working
principles, and potential limitations. Such fundamental knowledge
will enable researchers to effectively understand these algorithms
and utilize them appropriately in specific applications. In principle,
ML methods can be divided into three main categories: supervised
learning, unsupervised learning, and reinforcement learning (RL).
In supervised learning, the algorithm learns the mapping between
the input dataset and their ground-truth labels, while in unsupervised
learning, the algorithm aims to identify patterns and features in the
data without being explicitly trained on labeled examples. In
reinforced learning, an agent receives feedback in terms of reward or
punishments for each action and then uses this feedback to improve
future decision-making capabilities. In addition, there are other ML
methods, such as semisupervised learning. In semisupervised
learning, the ML algorithm is trained with both labeled and
unlabeled datasets. The labeled data first train the model, and then
themodel is used to label the unlabeled data. Examples of supervised
learning algorithms include linear regression, decision trees, and
NNs. Examples of unsupervised learning algorithms include
principal component analysis, K-mean clustering, and spectral
clustering. Examples of RL include policy gradient and Q-learning.
Examples of semisupervised learning include generative models
like generative adversarial networks (GANs). For more details on
the fundamentals of ML methods, readers are referred to textbooks,
see, e.g., Ref. [57] and online courses.
Machine learning methods are typically data-driven, that is, the

model is trained/informed by large datasets consisting of images,
texts, audio, and so on [28]. For example, the revolutionary AI
chatbot software, CHATGPT [58], was trained based on a transformer
language model [59] that uses self-attention mechanisms, allowing
the model to weigh input words at different positions to predict the
following words. In engineering and physics disciplines, however,
many problems can be well-defined by some underlying physical
laws such as partial differential equations (PDEs). For example, in
solid mechanics, the equilibrium, compatibility, and constitutive
equations (a set of PDEs) define the kinematics of continuumbodies.
Moreover, the physical laws themselves provide valuable a priori
temporal or spatial information, which can be integrated into theML
framework during training. To this end, the concept of physics-
informed neural networks (PINNs) [60] has been proposed by the
Karniadakis group at Brown University. This framework has paved
a new pathway to solving physical-law-governed forward and
inverse problems, reducing the need to collect a large dataset. Based
on the notion of data-driven and physics-informedMLmethods, we
may interpolate between these two ends, formulating a spectrum of
scientificMLmethods that may be developed for experimental solid
mechanics. Depending on the size of the dataset we could obtain,
and how much physics is embedded in the algorithms, the scientific
ML approaches can be categorized into three scenarios depicted in
Fig. 1: (I) physics-informed learning method [60,61], (II) physics-
based data-driven method, and (III) purely data-driven method. The
second scenario, i.e., the physics-based data-driven approach, is
typically employedwhen a problem is too complex to be completely
described by a set of PDEs. An example is the cohesive fracture of
solids, where the training dataset can be relatively easily obtained
frommassive computer simulations incorporating the physics of the
problem, e.g., finite element analysis (FEA) or molecular dynamics
(MD).
In the following subsections, we will briefly review some existing

ML algorithms and introduce terminologies that are useful for
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applications in experimental solid mechanics. In Sec. 2.1, we will
discuss one of the unsupervisedMLmethods, the clusteringmethod.
We will then introduce various types of NNs in Secs. 2.2–2.6. Then,
in Secs. 2.7 and 2.8, we will discuss RL and Bayesian inference.
Lastly, methods used in the scientific ML community will be
discussed in Secs. 2.9 and 2.10.

2.1 Clustering. Clustering is an unsupervised ML technique
that identifies data structure and grouping similar datasets into
several clusters. The most common clustering algorithm is the K-
means method, which groups the total dataset into K clusters by
minimizing the total distance between the data and computed cluster
centroids. When K-means algorithm fails to cluster the data due to
data nonlinearities or complexity, the spectral clustering algorithm
[63], which uses the spectral properties of the dataset to determine
clusters, can be employed. The principle of spectral clustering is to
transform a complex dataset into a low-dimensional representation
by using the spectrum (eigenvalues) of the similarity matrix of the
data. Then, the low-dimensional dataset can be clustered using
traditional clustering techniques, such as K-means clustering. In
experimental solid mechanics, spectral clustering particularly
applies to acoustic signals such as acoustic emissions from
mechanical response [64]. For example, Muir et al. [65] applied
the spectral clustering technique to identify the damagemechanisms
of SiC/SiC composites based on frequency information of acoustic
emission signals.

2.2 Neural Networks. Neural networks are an ML algorithm
inspired by the function and structure of the human brain. They
consist of an input layer, interconnected layer(s), and an output
layer. These layers are interconnected with nodes, which are like
neurons. Through passing information by interconnected layerswith
activation functions [57] (such as Sigmoid, Softmax, and rectified
linear unit (ReLu) functions [66]), the NN can learn a nonlinear
mapping between inputs and outputs. There is a variety of NNs,
including dense neural networks, convolutional neural networks
(CNN), GANs, graph neural networks (GNNs), recurrent neural
networks (RNNs), transformers, and autoencoders, which are useful
in inverse problems and data generation for solidmechanics.Among
these structures, the simplest architecture of NNs is the fully
connectedNNs, where all neurons in every layer are connected to all
neurons in the adjacent layers. In the next subsections, we will
briefly overview these NN structures and their current and potential
applications in experimental solid mechanics.

2.3 Convolutional Neural Networks. Convolutional neural
network is a type of DL algorithm commonly used for image

classification and feature extractions [67,68]. The input images are
processed through convolutional layers, subsequently passed
through the polling layer, and fully connected layers for feature
reduction and filtering.Multiple convolutional layers can be applied
to increase the complexity of the feature extraction. CNN can be
useful for both regression and classification of image-based
experimental data. For example, CNN can be used for material
property identification and microstructure characterization from
experimental images [69]. Furthermore, CNN can analyze images
obtained from full-field measurement techniques like interferomet-
ric and DIC data. Using CNN for feature extraction from
interferometric fringes can bypass the need for a conventional
fringe unwrapping process while also increasing the feature
extraction accuracy. For example, Jin et al. [70] employed a CNN-
based DL framework to extract dynamic cohesive properties and
fracture toughness of polyurea directly from image-shearing
interferometric fringes. Kaviani and Kolinski [71] developed a
CNN-based DL framework to convert fringes from Fizeau
interferometry with a low resolution into frustrated total internal
reflection images with high resolution while studying droplet
impact. Another important application for CNN in experimental
mechanics is to analyze DIC data. DIC is a powerful full-field
measurement tool to analyze local displacement and strain
distribution [15]. Many advanced DIC techniques like q-factor-
based DIC [72] and augmented-Lagrangian DIC [73,74] were
developed to increase the accuracy, efficiency, and robustness of
strain field calculation. Recently, Yang et al. [75] showed the
pretrained CNN-based DL algorithms from synthetic data can
accurately predict end-to-end measurement of displacement and
strain fields from experimental speckle images. CNNs were also
used by Espinosa and coworkers in the study of cell morphology
upon biomolecular delivery into cells using localized electro-
poration [76] and the localization of single cells within a population
for single-cell gene editing [77].

2.4 Recurrent Neural Networks. Recurrent neural networks
are a type of NNs that have been successfully used for processing
sequential datasets such as natural language [57]. Unlike feedfor-
ward NNs, RNNs can retain information about previous inputs. One
of the seminal RNNs models is long short-term memory (LSTM)
networks [78],whichwere developed to solve the vanishing gradient
problem for simple RNNs. RNNs have been widely applied in a
variety of applications, such as speech recognition, machine
translation, and natural language processing. In solid mechanics
applications, RNNs have been used in structural health monitoring,
such as crack path detection. For example, in Buehler’s group,

Fig. 1 Schematics of three ML approaches based on available physics and data: (I) PINNs; (II) physics-
based data-driven; and (III) purely data-driven (Reproduced with permission from Ref. [62]. Copyright
2021 by Hanxun Jin). Figure idea from Karniadakis et al. [61].
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LSTM models were trained based on atomistic simulations to
predict the fracture patterns of crystalline solids [79] and 2D
materials [80,81]. Furthermore, RNNs have been successfully
applied to model solids with plastic behaviors due to their capability
to deal with time-dependent data. For example, Mozaffar et al. [82]
applied RNNs to model path-dependent plasticity for complex
microstructures.

2.5 Graph Neural Networks. Graph neural networks [83] are
a type of ML method that is usually employed on graph-structured
data, which can be considered as a collection of nodes and edges.
The nodes represent entities, and the edges represent the relation-
ships between the entities. Therefore, GNNs are well-suited for
handling problems where the relationships between entities are
abstract, nonsequential, and highly interconnected.GNNs have been
successfully applied to a broad range of applications, including
recommender systems [84], social networks [85], drug discovery
[86], material property prediction [87], and protein nature frequency
prediction [88]. In solid mechanics, GNNs have been employed to
characterize and design complex mechanical materials and
structures based on the graph representation of their microstructure
and/or crystallography. For example, Guo and Buehler [89] applied
GNNs to design architected material through a semisupervised
approach. Xue et al. [90] developed a GNNs-based framework to
predict the nonlinear dynamics of soft mechanical metamaterials.
Hestroffer et al. [91] applied GNNs to predict mechanical properties
like stiffness and yield strength of polycrystalline materials. Thomas
et al. [92] employed GNNs to represent fatigue features in polycrystal-
line materials and predict high-cycle fatigue damage formation.

2.6 Generative Adversarial Networks and Conditional
Generative Adversarial Networks. Generative adversarial net-
works and conditional generative adversarial networks are ML
algorithms initially used in the field of computer vision, like image
generation. GANs consist of two NNs, a generator, and a
discriminator, trained simultaneously in a game-theory-based
framework to generate new synthetic datasets that mimic the
original datasets [93]. First, the generator creates new data from
random Gaussian noise. Then, the discriminator evaluates if the
generated data is true or false. The training finishes when a Nash
equilibrium [94] is reached, where the generator produces authentic
data that the discriminator could not identify as fake. Therefore,
GANs can be a promisingML algorithm for training data generation
and augmentation in solid mechanics, such as generating synthetic
structures of metamaterials, which can be used for simulations and
experiments. For example, GANswere applied to generate complex
architected materials, among which many of them have extreme
mechanical properties without prior knowledge [95]. Similarly,
GANs were used to generate three-dimensional (3D) micro-
structures from 2D sliced images, which are as authentic as real
microstructures of battery electrodes [96].While GANs have shown
tremendous success in data augmentation, there are some common
limitations, such as mode collapse and training instability [97],
which need attention to generate high-quality synthetic data.
Besides careful hyperparameter tunning, one possible solution is
to introduce physics-informed constraints during training. For
instance, in the context of microstructural generation, incorporating
statistical information, such as geometry descriptors [98], as a
constraint can help ensure that the generated structures adhere to
certain physical properties.Conditional generative adversarial net-
works are an extension of GANs where data generation is
conditioned on additional inputs or labels [99]. Beyond its data
generation capability, cGANs can also be used for image-based end-
to-end mapping and inverse problems, such as topology optimiza-
tion [100]. Applying cGANs to inverse problems enables the
generation of solutions that are consistent with the desired
properties. cGANs have been applied to image-to-image transitions
like image inpainting [101] or image semantic segmentation [102].
In Solid Mechanics, cGANs have been employed to inversely

identify the material modulus map while employing strain/stress
images [47] or predict strain and stress distributions in composites
[103,104]. Furthermore, cGANs have been successfully applied to
experimental data inpainting when partial experimental data is
missing [70].

2.7 Reinforcement Learning. Reinforcement learning is a
type ofML technique in which an agent learns to make the optimum
decisions by interacting with its environment to achieve a specific
goal [105]. During the training, the agent receives feedback in the
formof rewards or penalties based on its actions, enabling it to adjust
its time-dependent behavior to maximize the cumulative reward.
Therefore, there are three important aspects of RL: agent, environ-
ment, and reward. The RL methods can be categorized into value-
based methods, policy-based methods, and actor-critic methods.
Recent advances in deep reinforcement learning (DRL) [106] have
further expanded the capability of RL for sophisticated optimization
tasks. CommonDRL algorithms include deepQ-networks [107] and
deep policy gradient [108]. DRL has been widely used in game
playings, such as AlphaGo [109], autonomous robotics [110],
chemical design [111], and fluid flow optimization [112]. As its
application in solid mechanics, RL has been employed in a wide
range of optimization tasks, such as materials design and structural
optimization. In materials design, the geometry and material
parameters can be considered as the agent, and the desired
mechanical responses, like the stress–strain relationship, can be
considered as the environment. By sampling the design space, the
agent can receive a reward when the structure reaches the desired
properties. For example, Sui et al. [113] applied deep Q-networks to
design biphasic materials based on desired homogenized properties.
More recently, Nguyen et al. [114] developed a DL method by
combining GANs and RL to generate realistic three-dimensional
microstructures with user-defined structural properties.

2.8 Bayesian Inference. Bayesian inference, named after
Thomas Bayes, is a statistical method that allows us to quantify
the uncertainty of unknown parameters based on observed data
[115]. The fundamental concept of Bayesian inference involves
integrating prior knowledge about an unknown parameter with the
likelihood of the observed data given that parameter to generate the
posterior probability distribution. In contrast to ML methods that
focus on identifying the optimal model parameters, i.e., the
maximum likelihood estimate, Bayesian inference provides a
comprehensive description of the uncertainty surrounding the
parameters, allowing for robust uncertainty quantification. How-
ever, Bayesian inference also has certain drawbacks. First, the
selection of prior distribution can be subjective and may influence
the results, especially in the case of limited data. Second, computa-
tional cost can be intensive, especially for high-dimensional spaces,
as it involves sampling and computing likelihood across the entire
parameter space. Despite these challenges, Bayesian inference has
been widely used in various fields, such as finance, environmental
science, signal processing, and healthcare. In solid mechanics,
Bayesian inference has been widely used to identify material
parameters and quantify their uncertainty fromvarious experimental
data, such as uniaxial stress–strain data [116], force-indentation
depth data from nano-indentation [117], and resonance frequency
data from resonant ultrasound spectroscopy [118,119].

2.9 Physics-Informed Neural Networks. Since the landmark
paper [60] published by the Karniadakis group in 2019 (arXiv
preprint in 2017 [120]), PINNs have played a significant role in
scientific ML in engineering and physics disciplines [61]. The
fundamental idea of PINNs is to apply a NN to approximate the
solution to a physical problem, where the governing physical
principles (mathematically expressed by PDEs) are enforced as
prior knowledge by penalizing the residuals of PDEs, similar to
Refs. [121] and [122]. PINNs have been successfully employed to
solve scientific problems in a wide span of engineering disciplines
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such as heat transfer [123], fluid dynamics [124–126], wave
propagation [127], nano-optics [128], AM [129], and biomaterials
[130]. Due to the injection of physical laws into the learning
algorithm, PINNs require substantially less amount of data than
data-driven neural network approaches to achieve similar predictive
capability. For example, in the study on PINNs for fluid dynamics
[125], by exploiting several snapshots of the concentration field of
passive scalars, PINNs are capable of predicting the velocity and
pressure fields. To fulfill the same task in a data-driven approach
without integrating fluid mechanics, one may need at least hundreds
of paired snapshots of concentration, velocity, and pressure fields as
training data. To facilitate the usage of PINNs in the research
community, Lu et al. implemented various PINN algorithms in an
open-source Python library called DeepXDE [131].
As for the applications in solid mechanics, PINNs have been

successfully applied to both forward problems (i.e., solving
boundary- and initial-value problems) and inverse problems (e.g.,
material characterization and defect detection). For example,
Henkes et al. [132] employed PINNs to model micromechanics
for linear elastic materials. Haghighat et al. [133] applied PINNs to
build surrogate models for elastostatics and elastoplastic solids.
Bastek and Kochmann [134] employed PINNs to model the small-
strain response of shell structures. Zhang et al. [48,49] demonstrated
that PINNs could effectively identify the inhomogeneous material
and geometry distribution under plane-strain conditions. Though
most of the current PINNs frameworks in solid mechanics were
demonstrated using generated synthetic data as proofs of concept,
these frameworks can be applied to experimental mechanics
seamlessly where continuum mechanics theories apply.

2.10 Neural Operators. Neural networks are not only univer-
sal approximators of continuous functions [135], but also nonlinear
continuous operators [136]. Neural operators are neural network
models that learn operators, which map functions to functions, such
as differential operators, integral operators, and solution operators
for parameterized PDEs. Learning operators is especially important
in engineering and physics since many problems involve relation-
ships between functions rather than between parameters. Within the
scope of solid mechanics, examples of functions include displace-
ment fields, stress fields, load distributions, stiffness distributions,
crack propagation paths, and so on. TheKarniadakis group proposed
a neural operator architecture called deep operator network
(DeepONet) [137]. DeepONet consists of two parts: a branch net
to encode the discrete input function space and a trunk net to encode
the domain of the output functions. Since then, some other neural
operators have been developed [138,139]. For detailed explanations,
adequate comparisons among these algorithms, and comparisons
between neural operators and PINNs, the readers can refer to the
original papers and recent reviews [137,140,141]. It is worth noting
that while the original versions of these neural operators are data-
driven, physical principlesmay also be incorporated in a similar way
as PINNs, making the neural operators informed by physics in
addition to data [142,143]. In the past few years, neural operators
have been extensively applied to diverse engineering problems. In
solid mechanics applications, neural operators have been success-
fully used for elastoplasticity [144], fracture mechanics [145],
multiscale mechanics [43], and biomechanics [146–148].

3 Applications of Machine Learning in Experimental

Solid Mechanics

In this section, we will review recent advancements and
applications of ML in experimental solid mechanics, covering a
wide range of fields such as fracture mechanics, biomechanics,
nano- andmicromechanics, architected materials, and 2Dmaterials.
Table 1 provides an overview of some detailed applications in these
fields, including relevant ML algorithms and representative
references.

3.1 Machine Learning For Fracture Mechanics. Since the
landmark paper from Griffith in 1921 [179], the century-old

discipline of fracture mechanics has been established in advancing
a wide range of technological advancements, from airplane
structural integrity to novel materials with microscale architectures
to biomimicry of natural materials. From an experimental view-
point, there are applications of material failure we summarize here.
The first deals with quantifyingmaterial intrinsic fracture properties
such as fracture toughness or cohesive laws that enable the transfer
of knowledge obtained from laboratory tests to engineering
applications, e.g., designing new devices, machines, and structures
with unprecedented fracture resistance. The second addresses the
identification of nonvisible crack-like defects by providing
information such as their location and geometries from non-
destructive evaluation data. This enables failure and reliability
analysis, carried out to prevent catastrophic failure in service.
Interestingly, ML methods can estimate fracture toughness when

it cannot be easily measured using traditional methods, e.g., fracture
toughness testing, under quasi-static loading, based on theAmerican
Society for Testing and Materials standard. Readers specializing in
this subject are referred to a dedicated previous review [180].
Typically, testing samples are machined into specific geometries
and dimensions, and a load is applied to the sample to propagate a
crack. Then, experimental data such as load, displacement, and
crack-tip opening distance are recorded to obtain the fracture
toughness based on analytical solutions. Recently, these methods
have also been extended to measure the fracture toughness of soft
materials like hydrogen [181,182].However, such analytic solutions
are not applicable when testing samples with more complex or
irregular geometries and/or material nonlinearities. For example,
Liu et al. [149] proposed two ML approaches, decision trees and
NNs, to obtain the fracture toughness for microfabricated ceramic
cantilevers. The ML models mapped geometry descriptors of
cantilevers to their fracture toughness calculated from FEA. As
shown in Fig. 2(ai),when the analytical solution is not accessible due
to geometry and material complexity, an ML solution trained from
representative and sufficient FEA datasets can overcome these
weaknesses and provide accurate fracture toughness with a mean
error of 1% (Fig. 2(aii)). Furthermore, with knowledge extraction
and transfer techniques, the fracture toughness of samples with 3D
complexity can be efficiently predicted from simpler 2D simulations
[150].
Beyond the prediction of fracture toughness, ML can be

employed to inversely extract cohesive law parameters (assuming
its validity) from experimental measurements consisting of
load–displacement curves [151,152] or full-field measurements.
As previously articulated, the prediction performance can be
significantly improved by integrating physical governing laws like
equilibrium equations into ML training. For example, Wei et al.
[153] proposed a Green’s function embedded neural network to
extract mixed-mode cohesive zone properties using only far-field
displacement data measured from experiments. This method
integrates Green’s functions as a physical constraint, hence,
reducing the amount of training data and increasing the local model
accuracy. Furthermore, ML frameworks were developed to model
and characterize interfacial behaviors. For example, Liu [183]
proposed a deep material network with cohesive layers, which
enables accurate modeling of the material interface in heterogene-
ous materials. Wang and Sun [184] proposed a metamodeling
method that employs deep reinforcement learning to model
constitutive behaviors of interfaces.
Another important application of ML in fracture mechanics is the

crack path prediction, given the crack propagation history. Knowing
the crack path is helpful in preventing catastrophic material failure
by toughening the material along the path. For example, LSTM-
based ML models were trained based on atomistic modeling to
predict the fracture patterns of crystalline solids [79] and 2D
materials [80,81]. The LSTM model is capable of learning the
spatial-temporal relations from an atomic resolution of fracture,
hence, it is effective in predicting the crack path. In another
application, Goswami et al. [145] developed a physics-informed
variational formulation of DeepONet to predict the crack path in
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quasi-brittle materials by mapping the initial crack configuration to
the damage and displacement fields. More recently, Worthington
and Chew [185] applied NNs to predict the crack path of
heterogenous materials by mapping the crack process zone
information to the possible crack growth directions based on FEA
training employing a micromechanics fracture model. It is also
important to mention that current ML applications for crack path
prediction are primarily trained and validated using computational
datasets obtained from FEA or MD simulations. Thus, it remains
uncertain how these methods would perform when applied to real
experimental data. In the future, it is necessary to obtain high-fidelity
crack propagation data from advanced diagnostic imaging techni-
ques such as in situ computed tomography [186,187] or in situ
electron microscopy experiments [188–192]. This approach will
enable researchers to validate and improve the current ML
framework for crack path prediction.
When predicting dynamic fracture toughness under ultrahigh

loading rates, the conventional experimental measurement of
load–displacement is not accessible. To this end, Jin et al. [70]
proposed an ML-assisted big-data-generating experimental frame-
work that can accurately measure the dynamic fracture toughness

and cohesive parameters of samples from plate impact experiments.
As shown in Fig. 2(bi), a cohesive law identification experiment was
developed using plate impact, a target polyurea sample containing a
half-plane midcrack, and a novel spatial-temporal interferometer
that generates fringes associatedwith the sample rear surfacemotion
history. By employing a physics-based data-driven method, using
FEA, a CNN was trained to correlate the fringe images with
corresponding cohesive law parameters. After the CNN was well-
trained, polyurea’s dynamic fracture toughness and cohesive
parameters were successfully identified from the experimental
fringe image (Fig. 2(bii)). This big-data-generating experiment
framework can be easily extended to other mechanics problems
under extreme conditions, such as stress wave-induced phase
transformations, shear localization, and others where conventional
measurement methods are not applicable. Furthermore, uncertainty
quantifying of dynamic fracture properties in inhomogeneous
materials, e.g., composites, is crucial. Sharma et al. [193] developed
an ML framework bridging limited experimental data from
advanced experimental techniques and data-driven models like
Monte Carlo simulation to quantify the uncertainty of the dynamic
fracture toughness of glass-filled epoxy composites.

Table 1 Summary of ML applications in experimental solid mechanics

Areas of experimental mechanics Detailed applications ML algorithms Selected references

Fracture mechanics Fracture toughness NN, decision trees Liu et al. [149,150]
CNN Jin et al. [70]

Cohesive parameters CNN Jin et al. [70]
NN Su et al. [151], Ferdousi et al. [152]
PINN-based deep-green inversion Wei et al. [153]

Crack/flaw detection PINNs Zhang et al. [49]
CNN Niu et al. [154,155]

Crack path prediction LSTM Lew et al. [80,81]
DeepONet Goswami et al. [145]

Predict fracture instability Gaussian process regressions Athanasiou et al. [156]

Biomechanics Human motion NN Komaris et al. [157]
CNN Eerdekens et al. [158]

Constitutive parameters ResNet, CNN Holzapfel et al. [159]
NN Liu et al. [160]
PINNs Yin et al. [130], Kamali et al. [161]

Surrogate constitutive model Thermodynamics-based NN Masi et al. [41]
Constitutive artificial NN (CANN) Linka et al. [42]
DeepONet Zhang et al. [147], Goswami et al.

[162]
Neural operator You et al. [148]

Cell manipulation and analysis CNN Espinosa and coworkers
[76,77,163,164]

Micro-and nano-Mechanics Nano-indentation NN Muliana et al. [165], Huber et al.
[166,167]

MFNN Lu et al. [46]
Bayesian method Zhang et al. [117,168], Fernandez-

Zelaia et al. [169]

AFM data-driven NN Chandrashekar et al. [170]

Microstructure characterizations CNN, U-Net Herriott et al. [171], Sepasdar et al.
[172]

Random Forest statistical algorithm Bulgarevich et al. [173]
cGAN Ni et al. [47], Yang et al. [103]

Architected materials Verify computational design CNN, Auto-encoder Alderete et al. [174]
CNN, ResNet Ma et al. [175]

Training data generation GAN Mao et al. [95], Hsu et al. [176]
GNN Guo et al. [89]

2D materials MD force-field parameterization Multi-objective optimization
algorithm

Zhang et al. [177]

Fracture toughness Integrated experiment-simulation
framework

Zhang et al. [178]
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Beyond fracture properties identification, ML is also effective in
predicting internal crack/flaw geometry and locations from
experimental measurements. For example, Zhang et al. [49] applied
PINNs to identify internal cracks in linear and nonlinear solids (Fig.
3(a)). As shown in Fig. 3(ai), the framework uses the external
boundary conditions as “sensors” to inversely identify internal
cracks in the presence of deformation.More importantly, the PINNs
framework directly integrates the underlying physics, such as
material compressibility and equilibrium equations, into the loss
function (Fig. 3(aii)), hence, significantly reducing the amount of
data required during training while achieving high prediction
accuracy (Fig. 3(aiii)). Using this PINNs method, the cracks in
nonlinear solids, e.g., exhibiting elastoplastic behaviors, can also be
accurately identified [194]. Moreover, by employing a similar
PINNs framework, other material properties like modulus distribu-
tion were inferred [48]. To predict material strength in solids with
microcracks, Xu et al. [195] trained anML framework that maps the
crack distribution morphology to the strength calculated from
micromechanics theory. This framework can effectively predict the
strength of solids with randomly distributed microcracks. ML can
also be used with nondestructive measurement methods to
characterize internal crackswithout the application of deformations.
For example, Niu and Srivastava [154,155] used FEA-trained CNN
to accurately identify internal cracks from ultrasonic measurements
(Fig. 3(bi)). Impressively, the simulation-trained CNN can make
predictions of crack shape and locations, based on experimental
data, with a mean average percentage error of about 5% (Fig. 3(bii)).
The accuracy of the prediction can be attributed to the fact that FEA

can effectively simulate ultrasonic wave propagation processes.
There is evidence that the method could potentially be extended to
biomedical engineering applications, e.g., the identification of
cancer tumors in soft breast tissue.

3.2 Machine Learning For Biomechanics. Biomechanics is
an important research field addressing the mechanics of biological
systems, including organs and tissues [196]. One important research
topic in biomechanics is the understanding of human movement by
analyzing motion data from sensors. Comprehensive and massive
data have been collected over the past decades, including videos of
human motion kinematics, force/displacement data from wearable
devices like flexible electronics, and images obtained from
computed tomography and magnetic resonance imaging. Under-
standing these data and developing applicable biomechanical
models can guide the design of new devices and technologies to
address body-related issues, e.g., predicting injury risk in sports and
developing advanced medical devices. Recently, ML has been
widely applied for data analysis from wearable sensors [197]. For
example, Komaris et al. [157] successfully trained NNs based on a
public dataset of 28 professional athletes to estimate the runner’s
kinetics. Eerdekens et al. [158] employed a CNN-based ML model
trained from accelerometer data to understand equine activity.
Recent reviews [198–201] have extensively surveyed the applica-
tion of ML in this area. Therefore, in this subsection, we focus on
reviewing ML applications in experimental biomechanics for
characterizing and modeling biological materials such as tissues.

Fig. 2 Applications of ML in characterizing fracture cohesive properties. (a) ML solutions can predict accurate fracture
toughness comparable to simulationswhen an analytical solution is not available due to sample complexity: (i) ML framework for
engineering problems; (ii) NNs-based prediction of fracture toughness (Reproduced with permission from Ref. [149]. Copyright
2020 by Elsevier). (b) ACNN-based DL algorithm can accurately determine dynamic fracture toughness and cohesive parameters
under ultrahigh strain rate loading: (i) DL framework for cohesive parameter inversion from dynamic big-data-generating plate
impact experiments; (ii) comparison between predicted cohesive parameters and ground-truth. (Reproduced with permission
from Ref. [70]. Copyright 2022 by Elsevier).
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Another important ML application in biomechanics is cellular
manipulation [202], the readers are referred to a recent review paper
[163] for details.
Most biological tissues, such as blood vessels and brain matter,

are soft materials. Their surface can easily form multimode
instability, i.e., Ruga morphologies [203–206], under external
loading. For example, Jin et al. [204] performed FEA and
experiments to systematically understand the surface instability

and postbifurcation phenomenon of soft matter containing orifices,
e.g., arteries, when subjected to external pressure. Furthermore,
many of these materials are anisotropic, i.e., their mechanical
responses are dependent on the loading direction. Therefore,
characterization of these materials using well-planned experiments
as well as identification of constitutive models are needed to
understand and predict their mechanical behaviors. In turn, the
information can be used in the investigation of disease and the

Fig. 3 Applications ofML in crack/flaw detection. (a) PINNs can identify internal voids/inclusions for linear
andnonlinearsolids: (i) general setup forgeometric andmaterial property identification; (ii) architecturesof
PINNs forcontinuumsolidmechanics. (iii) inferenceofdeformationpatternsunderdifferent trainingepochs
(Reproduced with permission from Ref. [49]. Copyright 2022, The authors, published by AAAS). (b) FEA
simulation-trained CNN was used to determine crack locations and geometry in experiments: (i) proposed
CNN architecture, (ii) CNN predicted crack property compared to ground-truth (Reproduced with
permission from Ref. [154]. Copyright 2022 by Elsevier).
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design of artificial organs. Many historical models have been
developed to characterize various biomaterials, such as the neo-
Hookean model [207], Ogden model [208], Fung-type model for
blood vessels [209], and Holzapfel–Gasser–Ogden (HGO) model
[210] for anisotropic biomaterials. However, identifying these
constitutive parameters from experimental data typically requires
extensive nonlinear FEA and sophisticated optimization algorithms
[211–213]. ML can help infer material parameters from limited
experimental data with multimodality, such as mechanical testing
and microstructure data obtained from images. For example, Liu
et al. [160] developed an ML framework to identify the HGO
constitutive parameters of aortic walls based on synthetic micro-
structural data. Kakaletsis et al. [214] compared the parameter
identification accuracy from an iterative optimization framework
and a stand-alone NN for isotropic and anisotropic biomaterials.
Results suggest that replacing FEA with Gaussian process
regression or NN-based metamodels could accelerate the parameter
prediction process while replacing the entire optimization process
with a stand-alone NN yielded unsatisfactory predictions. Recently,
Holzapfel et al. [159] developed a hybrid DL model based on a
residual network (ResNet) andCNN to infer three unknownmaterial
parameters for a modified HGO model [215] (Fig. 4(ai)). This ML
model maps second-harmonic generation microstructure images,
representing the orientation and dispersion of collagen fibers, to
their mechanical stress–strain data for a total of 27 artery samples.
By employing this hybrid ML model, the coefficient of determi-
nation, R2, was 0.97, while conventional least square fitting gave
R2 ¼ 0:676 with a much larger standard deviation (Fig. 4(aii)). The

exceptional high-accuracy prediction achieved from a limited
biomechanics dataset can be attributed to two factors. First, the
multimodal nature of the dataset allows for the inference of material
parameters beyond the conventional stress–strain data. Second, a
priori knowledge of theoretical constitutive laws also contributes to
reducing the necessary dataset size. As the authors suggested,
expanding the experimental datasets and incorporating biaxial
extension experiments are required to validate these results. This
research could have a transformative impact on soft tissue
constitutive modeling, i.e., modeling soft tissues using prior physics
laws and limited but multimodal experimental datasets.
Recent advances in PINNs provide a promising alternative in

constitutive parameter identification for biomaterials by encoding
the underlying physics. As shown in Fig. 4(bi), Yin et al. [130]
employed PINNs to infer the permeability and viscoelastic modulus
of the thrombus. The interaction between thrombus and blood flow
can be described by sets of PDEs like Cahn–Hilliard and
Navier–Stokes equations. The parameters can be accurately
identified by encoding these governing physics during the PINNs
training (Figs. 4(bii) and 4(biii)). Their results also demonstrated that
PINNs could infer material properties from noisy data exhibiting
complexity. Recently, Kamali et al. [161] implemented PINNs to
accurately identify Young’s modulus and Poisson’s ratio for
heterogeneousmaterials like brainmatter. Thismethod has potential
clinical applications, e.g., noninvasive elastography.
Recently, a data-driven computation framework for constitutive

modeling was proposed by Ortiz and coworkers [216–219]. In this
framework, a data-driven solver directly learns the mechanical

Fig. 4 Applications of ML in constitutive parameter inversion for biomaterials. (a) A hybrid DL framework to identify unknown
material parameters of arteries with high coefficient of determination: (i) hybrid model architecture; (ii) predicted stress–stretch
curves from standard fitting method compared to the proposed hybrid model. (Reproduced with permission from Ref. [159].
Copyright 2021, The authors, published by the Royal Society). (b) Noninvasive inference of thrombus material parameters using
PINNs: (i) schematic of PINNs for solving inverse problem; (ii) prediction and ground-truth of 2D flow around a thrombus; (iii)
comparison of the inferred permeability of 2D flowwith the ground-truth. (Reproducedwith permission fromRef. [130]. Copyright
2021 by Elsevier).
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responses of materials from experimental data, which eliminates the
need for complex empirical constitutive modeling. In this approach,
NNs can be employed to build surrogate models of biomaterials for
constitutive modeling [220,221]. For example, Linka et al. [42]
developed a constitutive artificial NN to learn the constitutive
models for hyperelastic materials directly from given stress–strain
data. Masi et al. [41] introduced a thermodynamics-based NN for
constitutive modeling by coupling thermodynamics laws as
constraints during training. Li and Chen [222] developed an
equilibrium-based CNN to extract local stress distribution based
on DIC strain measurements performed in hyperelastic materials.
Wang et al. [223] developed an ML algorithm based on singular
value decomposition and aGaussian process to buildmetamodels of
constitutive laws for time-dependent and nonlinear materials. This
metamodeling method can be used to determine sets of material
parameters that are best fit for experimental data. In another
investigation, Liu et al. [224] developed a physics-informed neural
networkmaterial model to characterize soft biological tissues. Their
model consists of a hierarchical learning strategy by first learning
general characteristics for a class of materials and then determining
parameters for each individual case.
Neural operators can also be employed to build data-driven

surrogate models for constitutive modeling of biomaterials due to
their advantage of generalizability and prediction efficiency for
different inputs. For example, as shown in Fig. 5(ai), Zhang et al.
[147] developed a DeepONet-based model, genotype-to-

biomechanical phenotype neural network (G2Unet), to characterize
mechanical properties of soft tissues and classify their associated
genotypes from sparse and noisy experimental data.With a two-step
training process consisting of a learning stage and an inference stage
with an ensemble, G2Unet could effectively learn the constitutive
models from biaxial testing data for 28 mice with four different
genotypes with an L2 error of less than 5% (Fig. 5(aii)).
Interestingly, it could also identify the correct genotype. This DL
framework has important implications in biomechanics and related
clinical applications, which is learning relationships between
genotype and constitutive behaviors in biological materials from
limited experimental data. Yin et al. [146] employed DeepONet to
build a data-driven surrogate model that could predict the damage
progression of heterogeneous aortic walls. Goswami et al. [162]
developed a DeepONet-based surrogate model to identify patho-
logical insults that could lead to thoracic aortic aneurysms from a
synthetic FEA database. More recently, You et al. [148] employed a
Fourier neural operator-based method to model mechanical
responses of soft tissues under different loading conditions directly
from experimental data (Fig. 5(bi)). The proposed physics-guided
implicit Fourier neural operator architecture is shown in Fig. 5(bii).
This method learned the material deformation model from DIC
measurements and could predict the displacement field under
unseen loading conditions with errors smaller than those
ascertained in conventional constitutive models for soft tissues
(Fig. 5(biii)).

Fig. 5 Applications of neural operator in constitutive modeling of biomaterials. (a) A DeepONet-based DL framework to infer
biomechanical response andassociatedgenotypeof tissues: (i) theDL framework; (ii) reconstructed stress–stretch relationships
comparedwith their true values (Reproducedwith permission fromRef. [147]. Copyright 2022, The authors, published by PLOS).
(b) A neural operator model to construct the mechanical response of biological tissues from displacement data measured from
DIC: (i) thebiaxial experimental setup; (ii) the architectureof the physics-guidedFourier neural operator; (iii) error comparisonsof
proposed Fourier neural operator method and other mechanics models (Reproduced with permission from Ref. [148]. Copyright
2022 by ASME).
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3.3 Machine Learning For Micro- and Nano-Mechanics.
The emerging development of nanotechnology and biotechnology
in recent decades continuously requires a new understanding of
micro- and nanoscale material behaviors. For example, much
research has been conducted on understanding the mechanical
properties of nano-and micropillars [225–227], thin films
[228–233], nanostructured metals [27,226,234–237], submicron-
sized sensors [238], crystalline nanowires [188,239–241], 2D
materials [178,242–246], origami [247], nanolattice metamaterials
[248–250], and copolymers with nanoscale features [70,251–253].
Conducting precise experiments to characterize thesematerials with
small-scale features is essential to understand their properties and
underlining mechanisms and developing constitutive models. There
are two major steps in this process. First, experimental measure-
ments are taken from instrumentations with nanometer resolution.
Advanced microscopes, including scanning electron microscope
(SEM), transmission electron microscope (TEM), and atomic force
microscope (AFM), have been developed to capture images with
nanometer resolution. Furthermore, nanomechanical instruments,
like nano-indenters and MEMS, have been developed for nano-
mechanical characterization. Next, the properties of interest can be
extracted from measurements via inverse algorithms. However,
compared to macroscale samples, the interpretation between
measurable data and material properties is not straightforward
because the samples contain nanoscale features due to local
inhomogeneity [254,255], size effect [231,256], or chemomechan-
ical coupling [257]. For example, in instrumented indentation
[258,259], identifying the material properties from measured load
and indentation depth data is nontrivial and sometimes may not
guarantee unique solutions when the material constitutive law is
elastoplastic [260,261] or the indentation tip has a conical shape
[262]. Therefore, there is a critical demand to identify material
properties and quantify their uncertainty using nanomechanical
experiments. Due to the popularity and accessibility of nano-
indentation data,MLhas beenwidely applied to such data. Hence, in
this section, we review two methods used in interpreting nano-
indentation data: the NN approach and the Bayesian-based
statistical approach. We note that the methods are also applicable
to other nanomechanical experiments, such as the membrane
deflection experiments [263] and in situ, microscopy testing using
MEMS technology [11], which provides direct measurement of
stresses and strains. Finally, ML applications to other nano-and
micromechanics features, e.g., microstructure characterization, will
be briefly reviewed.
For using the NNs method to identify material properties in

nanoindentation, most of the training is based on FEA due to its
flexibility and efficiency. Indentation, a well-defined contact
mechanics problem, can be accurately simulated in either
commercial FEA software or in-house codes [264,265]. In 2002,
Muliana et al. [165] trained a neural network with hidden layers
based on 2D and 3D FEA simulations to map nonlinear material
properties from simulated load–displacement curves. They found
that the trained NN can accurately predict the load–displacement
curves of materials with properties not included in the training
dataset. This work demonstrated the potential of using NNs to
inversely obtain unknown material properties from experimental
data. Huber et al. [166,167] used FEA-trained NNs to identify the
Poisson’s ratio of materials exhibiting plasticity with isotropic
hardening, something not easily obtained before. Since then, FEA-
trained NNs have been widely applied as an inverse algorithm to
identify material properties from nanoindentation [266–275].
However, in practice, these FEA-trained NNs could be cumbersome
since they require a substantial amount of FEA training data to
survey combinations of material properties within specific ranges.
Such a training process is generally computationally expansive,
especially when the unknown parameter space is large. Further-
more, the trainedNNs usually have poor extrapolation performance,
i.e., when material properties are outside the range used in the
training dataset. Another issue in this approach is the lack of
uncertainty quantificationwhen identifying properties from datasets

based on FEA. To overcome these challenges, Lu et al. [46] utilized
a multifidelity NN (MFNN) [276], which trained low-fidelity FEA
datasets together with a few high-fidelity experimental datasets
together (Fig. 6(ai)). As shown in Figs. 6(aii) and 6(aiii), the MFNN
can efficiently learn the correlations between these two datasets with
different fidelities, hence significantly increasing the identification
performance while reducing the size of FEA training datasets. The
MFNN performance can be further improved by employing transfer
learning when additional experimental data are obtained.
The NN method can identify unknown material parameters from

indentation data as explained above. However, this method could
not systematically quantify the uncertainty of identified parameters,
i.e., yielding the likelihood that other possible parameter sets also
minimize the cost function. The Bayesian method, which was
derived based onBayes’ theorem [277], can be employed to quantify
uncertainty in nanoindentation since it can provide a posterior
probability for each set of parameters. For example, Fernandez-
Zelaia et al. [169] utilized the Bayesian framework to identify
unknown material parameters from an FEA-trained Gaussian
process surrogate model using spherical indentation experiments.
The Bayesian framework has also been employed to identify
unknown properties from the spherical indentation of single crystal
[278], plastic solids with exponential hardening laws [279], and
plastically compressible solids with Deshpande–Fleck constitutive
laws [168]. For the case of conical indentation, which is similar to
experiments using a Berkovich indenter, the indentation force
versus indentation depth (P-h) data sometimes could not yield
unique sets of unknown parameters. To solve this issue, as shown in
Fig. 6(bi), Zhang et al. [117,280] employed aBayesian framework to
extract plastic properties and quantify the uncertainty from both P-h
curves and surface profile datasets obtained from FE simulations
(Fig. 6(bii)). Furthermore, as shown in Fig. 6(biii), the posterior
probability for possible material parameters could be calculated
from both noise-free and noise-contaminated datasets. Later, Zhang
and Needleman [281] applied the Bayesian framework to infer
power-law creep constitutive parameters considering both the time-
dependent indentation depth data and the residual surface profile.
Though this framework was developed based on synthetic data from
simulations, the parametric identification from the Bayesian
approach offers valuable insights into uncertainty quantification
resulting from nanoindentation experiments performed onmaterials
with complex constitutive behaviors.
To understand the mechanical properties of soft materials such as

biological tissues [282] and cells [163], one can conduct nano-
indentation tests using AFM signatures based on high-resolution
force detection and cantilever tip position obtained from a four-
quadrant position-sensitive photodiode [283,284]. For example,
Rajabifar et al. [285] trained a multilayer NN to predict surface
viscoelastic and adhesive properties of samples based on
load–displacement curves obtained from AFM tapping mode.
They generated the training data from a rigorous contact mechanics
model, known as the enhanced Attard’s model [286]. Here also, ML
can be employed to extract the nanoscale force without complex
modeling. For example, Chandrashekar et al. [170] used a data-
driven ML algorithm to capture the tip-sample force in dynamic
AFM. The algorithm was also used to successfully identify the
interaction forces for two-component polymer blends. Furthermore,
the material parameter identification from AFM indentation data
inherently involves uncertainty, which depends on the choice of
contact mechanics model. To mitigate this uncertainty in modulus
identification, Nguyen and Liu [287] employed five conventional
supervised ML techniques (decision trees, K-nearest neighbors,
linear discriminant analysis, Na€ıve Bayes, and support vector
machines) to classify AFM indentation curves for different
materials into appropriate contact mechanics models. By choosing
the appropriate contact mechanics model, the uncertainty of
modulus identification can be potentially reduced.
Another important ML application for nano-and micromechanics

is microstructure characterizations [69,288–291]. Since the rapid
advances of high-resolution imaging techniques, ML algorithms
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like CNNs have been increasingly applied to microstructure
characterizations. For example, ML can be employed in micro-
structural image segmentation to identify individual grains or phases
[292–295].Additionally,MLcan be applied to detect defects such as
cracks based on microstructural images [173] as well as predict
unknown material properties like yield strength [171] based on
microstructure features such as grain size, orientation, and
crystallographic features. Furthermore, ML can be applied to
analyze evolving microstructure images to analyze time-dependent
material behaviors during fracture [296,297], recrystallization
[298], phase transformations [299], and cell morphology
[76,77,163,164]. These ML applications in microstructure charac-
terizations could enable rapid and accurate analysis of complex
material microstructures, leading to developing of next-generation
materials with desired properties.

3.4 Machine Learning For ArchitectedMaterials. Recently,
the concept of materials by design has enabled us to design
multifunctional materials with unprecedented properties. Such
progress can be attributed to the rapid development of computa-
tional tools for structural design and experimental techniques for the
synthesis and characterization of materials [21,300]. Among these

novel materials, architected metamaterials, which combine the
properties of material constitutes and architectural design, have
demonstrated their superior mechanical properties like ultrahigh
specific strength [301], excellent recoverability [250,302], and
impact resilience [303]. Along this line, ML is becoming an
important tool to systematically design these novel architected
metamaterials with desired properties and functionality beyond
laboratory trial-and-error [45,304–311]. Comprehensive review
papers have been published in recent years that reviewed and
discussed the methodology and applications of ML in architected
material design [33,38,312,313]. Herein, in this subsection, we will
focus on reviewing recent advances in experimental efforts in ML-
enabled design of architected materials.
One significant aspect of experimental mechanics in architected

materials is to verify the predicted power of computational methods
used in the inverse design. Given the formidable challenges
associated with cost and speed for the acquisition of large-scale
experimental data sets, most of the current ML frameworks in
material discovery were trained based on big datasets from reliable
physically based computer simulations. Therefore, careful verifica-
tions from experiments are necessary to assess theML framework’s
performance in producing real structures/materials with desired

Fig. 6 ApplicationsofML innano-indentation. (a)DLmethods includingsingle-fidelityNNs,multifidelityNNs,and
residualmultifidelity NNs to identifymaterial parameters from instrumented indentation: (i) architectures of these
NNs; (ii) Mean absolute percentage error as a function of training dataset size for multifidelity NNs; (iii)
identificationof hardening exponent for twoaluminumalloys from2D, 3DFEA simulations and three experimental
data points (Reproduced with permission from Ref. [46]. Copyright 2020, The authors, published by PNAS). (b) A
Bayesian-type statistical approach to identifymaterial parameters and their uncertainty from conical indentation:
(i) schematics of indentation configuration with conical tips; (ii) force-indentation depth curves and surface
profiles for three different materials; (iii) posterior probability distribution of parameters with and without noisy
data (Reproduced with permission from Ref. [117]. Copyright 2019 by ASME).
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properties. For example, as shown in Fig. 7(a), Alderete and Pathak
et al. [174] have proposed an ML framework that combines the K-
mean clustering methods for design space reduction and a tandem
NN architecture to inversely design shape-programable 3D
Kirigami metamaterials. The tandem NN architecture was
employed to circumvent the nonuniqueness issue during the inverse
design process (Fig. 7(b)). The framework was trained on finite
element predictions of instabilities triggering 3D out-of-plane
shapes and then validated by full-field experimental measurements
using the shadow Moir�e method [314] (Fig. 7(c)). A very good
agreement between ML-designed cuts and predicted out-of-plane
deformation and experimentswas found undermechanical actuation
(stretching).Moreover, using symbolic regression, the authors could
predict the onset of actuation and needed stretching to achieve
specific 3D shapes. These programable 3D kirigami metamaterials
can be used in various engineering applications over a large range of
size scales, from microscale particle trapping to macroscale solar
tracking.
Likewise, ML can also assist in the inverse design of complex

functional soft materials. For example, as shown in Fig. 8(a), Ma
et al. [175] developed a ResNet-based model trained with FEA to
inversely design tunable magnetomechanical metamaterials. The
ResNet model was chosen due to its capability to preserve
information between shallow and deeper layers (Fig. 8(b)) [315].
The predicted structures were printed and actuated in the magnetic
field and found to be in good agreement with ML predictions (Fig.
8(c)). Moreover, GANs can also be employed to design architected
structures without prior experience. For example, Mao et al. [95]
used GANs to systematically design complex architected materials
and found that some structures can reach Hashin–Shtrikman upper
bounds. Experimental verification was also conducted by the
authors to show the robustness of the framework. Furthermore,
due to the stochastic deformation modes of metamaterials like
buckling under compression, uncertainty quantification is necessary
to design reliable structures. For example, Bessa et al. [316]
demonstrated that a data-driven Bayesian ML framework could
enable the design of super compressible metamaterials (Fig. 9(a)).
Experiments on multiscale 3D printed structures (both macroscale
and microscale) have also demonstrated the super compressibility
predicted by simulations (Figs. 9(b) and 9(c)).
Another important feature in this field is the ability to conduct

high-throughput experiments to generate high-fidelity data needed

forML training. Until now,most of theMLalgorithms applied to the
inverse design of architected metamaterials have been trained using
computer simulations. However, such a computer data-driven
approach assumes the model is accurate and readily obtainable.
This may not be the case in more complex behaviors arising from
material nonlinearities and rate dependencies for which accurate
constitutive descriptions do not exist. A solution would be to run
autonomous experiments based on a large number of additively
manufactured structures/samples to obtain valuable representative
data such as stress–strain curves or deformation patterns [317–319].
As such, there is a need to develop new ML frameworks for the
inverse design of novel metamaterials directly from large and noisy
experimental datasets. For example, Lew and Buehler [320] trained
an ML framework called DeepBuckle that combines the variational
autoencoder model and LSTM model to quantitatively learn
buckling behaviors of polymer beams from simple and limited
mechanical testing on 3D printed structures.

3.5 Machine Learning For Two-Dimensional Materials
Fracture Toughness Characterization. In the past decades,
significant progress has been made in the synthesis of 2D materials
such as graphene, hexagonal boron nitride (h-BN), and transition
metal dichalcogenides (TMDs), e.g., molybdenum disulfide
(MoS2), including fabrication, chemical functionalization, transfer,
and device assembly [321–323]. Therefore, quantifying their
mechanical properties, like fracture toughness, is crucial to ensure
the durability and reliability of these 2D material devices. Ni et al.
thoroughly reviewed the recent experimental, theoretical, and
computational progress on quantifying 2D materials’ fracture
properties [324]. In addition, progress on ML prediction of 2D
material fracture, including fracture pattern characterization, was
previously discussed. Here, in this subsection, we will focus on
reviewing the most recent experimental mechanics efforts from the
Espinosa group to quantify fracture toughness via in situ high-
resolution transmission electron microscopy experiments. Like-
wise, we will review ML-based parametrization of interatomic
potentials for 2D materials and discuss the integrated experimental-
computational framework advanced by the Espinosa group, not only
to understand fracture (Fig. 10(a)). Such ML and atomistic
experimentation frameworks are essential in advancing the
predictive power of atomistic models employed in the exploration

Fig. 7 Applications of ML in designing shape-programmable kirigami metamaterials. (a) The ML framework to inverse design
kirigami metamaterials. (b) Schematics of the tandem network employed for inverse design. (c) Experimental verification of
inverse design fromshadowMoir�emethod (Reproducedwith permission fromRef. [174]. Copyright 2022, The authors, published
by Springer Nature).

Applied Mechanics Reviews NOVEMBER 2023, Vol. 75 / 061001-13

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanicsreview
s/article-pdf/75/6/061001/7032185/am

r_075_06_061001.pdf by N
orthw

estern U
niversity user on 28 August 2023



of families of 2Dmaterials (e.g., TMDs andMXenes) in the spirit of
the materials genome initiative.
The fracture toughness of monolayer graphene [325] and h-BN

[245] have beenmeasured using in situ SEM and TEM experiments.
It was found that both materials obey Griffith’s brittle fracture
criterion [179]. Assisted by molecular dynamics simulations,
researchers attributed their high toughness to different intrinsic
toughening mechanisms like pre-existing grain boundaries for
graphene and structural-asymmetry-induced crack branching and
deflection for h-BN. However, the direct observations of atomistic
information like internal defects and lattice deformation are absent
due to the resolution limits of the previous experiments. To
overcome these challenges, in our group, Zhang et al. [178]
performed in situ high-resolution transmission electron microscopy
(HRTEM) fracture experiments to investigate the fracture toughness
of two TMDs, MoS2, and MoSe2 (Fig. 10(b)). The J-integral was
computed from experimental stress–strain fields obtained from an
affine transformation (deformation gradient) using HRTEM images
of atomic structures surrounding the crack tip. The experimental
measurements revealed a nonlinear region near the crack tip, where
bond dissociation occurs, and confirmed brittle fracture and the
applicability of Griffith’s fracture criterion.
To verify the experimental observations, Zhang et al. also

performed MD simulations with a newly developed ML-based
parametrization framework [177]. Force-field accuracy in MD
simulations plays a crucial role in studying large atomic deformation
as they occur near the crack tip. Although several successful
parametrizations have been developed for various 2D materials
[326–328], a force field that can accurately predict phase transition
and fracture toughness of 2D materials was not reported. While ML

has immense potential for force-field parameterization directly from
large datasets based on first principal calculation like density
functional theory (DFT) [329,330], a suitable methodology that can
incorporate atomic configurations far from equilibrium, essential to
the prediction of fracture, is not common. Zhang et al. [177]
proposed a parametrization framework trained from DFT datasets
and an evolutionary multi-objective optimization algorithm (Fig.
10(c)). This parametrization was performed iteratively and
consisted of three essential steps: training, screening, and evalua-
tion. The force field was trained to capture both near-equilibrium
properties like cohesive energy and nonequilibrium properties such
as bond dissociation energy landscapes and vacancy formation
energies. Therefore, the parametrized potential can accurately
capture bond breakage during fracture. MD simulations with this
potential gave similar fracture toughness as those obtained from
experimental measurements. We anticipate that by integrating in
situ experiments with atomistic resolution andMD simulations with
force-field parametrized based on physical ML training, the fracture
behaviors of other 2D materials beyond the TMDs family as well as
other functional crystals can be identified. Moreover, MD
simulations with ML parameterized force fields should accurately
predict the effect of defects such as random vacancies, line
vacancies, and grain boundaries, enabling the exploration of other
constituents as well as thermomechanical properties.

4 Discussion

4.1 Selection of an Appropriate Machine Learning Model
for a Specific ExperimentalMechanicsApplication. Selecting an
appropriate ML model for a given task in experimental mechanics

Fig. 8 (a) Applications of ML in the inverse design ofmagneto-activatemechanicalmetamaterials. (b) The deep residual network
(ResNet) architecture. (c) Comparisons between FEA and experiments (Reproduced with permission from Ref. [175]. Copyright
2022 by ACS).

061001-14 / Vol. 75, NOVEMBER 2023 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanicsreview
s/article-pdf/75/6/061001/7032185/am

r_075_06_061001.pdf by N
orthw

estern U
niversity user on 28 August 2023



can be challenging since the broad range of ML algorithms and the
complexity of experimental data. Here, we provide some practical
guidelines on ML model selection based on the type and amount of
available data, as well as the underlying physics of the problem.
Before searching for a specific ML model, researchers and
practitioners should ask themselves a crucial question: is ML
necessary for the problem at hand? It is important to avoid the
unnecessary use of ML when conventional methods and techniques
are sufficient. For instance, using ML for constitutive parameter
fitting for simple models like neo-Hookean solids from stress–strain
data is not necessary. In such a case, nonlinear regression is preferred
instead.
Next, it is important to properly define the types of problems that

the user wishes to tackle. Are we using ML for an inverse problem
like predicting unknown material parameters from experimental
data? Or is it an optimization problem like the optimal design of
architected materials subject to specific constraints? Having these
questions and others answered before searching for suitable ML

algorithms is important. Furthermore, one should be aware of the
quantity and quality of available information before choosing an
appropriate ML model. What forms of experimental data are
available (e.g., stress–strain curves, images, full-field displace-
ment)? What is the precision of these data? Is there any prior
knowledge or simulation tool thatmay enrich the data?When a large
amount of experimental data can be collected, a complexMLmodel
like NNs can be applied. On the other hand, when there is data
scarcity due to experimental constraints, the user may opt for
employing PINNs or Gaussian Processes to embed additional
physics and quantify uncertainty.
When experimental data is not adequate, possible data augmen-

tation techniques can be employed. One common approach is to
interpolate among the original datasets. For image-based data,
methods such as rotation, flipping, or noise injection can be
employed [331]. It is crucial to exercise cautionwhen applying these
data augmentation methods, ensuring the key characteristics of the
original data are maintained while increasing its quantity.

Fig. 9 (a) Data-driven Bayesian ML framework for supercompressible metamaterials design.
(b) Experimental validation for designed structure from fused filament fabrication using polylactic
acid. (c) Experimental validation for designed structure with microscale size from two-photon
lithography. The scale bar in (c) is 50lm. (Reproduced with permission from Ref. [316]. Copyright
2019, The Authors, published by WILEY).
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Furthermore, if experiments are well-defined and can be simulated
efficiently using some computational tools like FEA,MD, and DFT,
we can generate synthetic data from these simulations. However, it
is crucial to thoroughly examine and understand the differences and
biases present in both computational and experimental datasets. We
should ensure that the computational data accurately captures the
experimental data’s key features. During training, it is important to
monitor themodel’s performance on both datasets during training to
identify any overfitting to the synthetic data. Understanding the
differences between the fidelity of computational and experimental
data is another important aspect, which will be discussed in the
subsequent subsection.
The selection of an appropriate ML algorithm is also based on the

experimental data type. If the data consists of images or video-based
datasets, CNNs could be the most efficient. If the problem involves
time-dependent data, RNNs and transformers could be a better
choice. When the problem can be framed in terms of physical laws,
PINNs should be employed. Given the speed at which the field is
evolving, literature searches should be performed to identify the
most suitable ML models for the problem at hand. Once the ML
algorithms have been selected, the user can start to build an ML
pipeline using open-sourceMLplatforms such as TENSORFLOW [332],
PYTORCH [333], or JAX [334]. Iterative refinement of theMLmodel by
hyperparameter-tuning based on testing and validation datasets is
necessary to reach the desired accuracy. However, it is worth noting
that over-tuning hyperparameters can potentially result in over-
fitting. To address this issue, we can employ robust hyperparameter

optimization methods such as k-fold cross-validation [335]. In
k-fold cross-validation, the original dataset is split into k equal folds.
During each iteration, one-fold is used as the validation set, while the
other k � 1 folds are used for training. After completing all
iterations, we can compute the average performance metric, such
as mean squared error, from all k validation sets. This method can
efficiently reduce the risk of overfitting since it trains and evaluates
the model on different subsets of the data. Furthermore, it is
important to keep in mind that there may be more than one possible
choice ofMLmodel for a specific experimental mechanics problem.
Therefore, it is practical to carefully evaluate the prediction
accuracy and efficiency of each model and select the model that is
the best fit for a specific application.

4.2 Integrating Multimodality and Multi-Fidelity Experi-
mental Data Into Machine Learning Methods. Conducting
mechanical experiments, particularly those utilizing cutting-edge
facilities and techniques for extremely large/small time and length
scales, can be both costly and time-consuming. In many cases,
researchers need to combine different experimental methodsto gain
a better understanding of mechanics problems. Furthermore,
computer simulations may be employed to provide additional
insight into the experiments. As a result, one may obtain
experimental data with multimodality and/or multifidelity. Multi-
modal data refers to the data on an object comprising different forms
and patterns, hence providing information from different channels

Fig. 10 Applications of ML in fracture toughness characterization of 2D materials. (a) An integrated experiment-simulation
framework to quantitively measure intrinsic fracture toughness of 2D materials. (b) In-situ HRTEM experiments of MoSe2
compared with MD simulations (Reproducedwith permission fromRef. [178]. Copyright 2022 by National Academy of Sciences).
(c) Schematic of ML-based interatomic potential parametrization approach consisting of three steps: training, screening, and
evaluation (Reproduced with permission from Ref. [177]. Copyright 2021, The authors, published by Springer Nature).
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(e.g., language data in the forms of text and speech, data on the
mechanical test sample in the forms of images, and stress–strain
curves). Multifidelity data refers to the measurement data with
different levels of accuracy (e.g., high/low-resolution images of a
test sample; stress–strain curves measured with load cells of
different accuracies; data from real experiments and from computer
simulations). Typically, high-fidelity data are expensive and hence
limited, while low-fidelity data are cheap and plentiful.
To maximize the available information injected into learning

algorithms, it is important to proposeMLmodels that are capable of
handling data with multimodality [336] and multifidelity [276].
There have been some studies in applying such ML models to
mechanics problems. For example, Holzapfel et al. [159] developed
an ML method that combines microstructural information and
biomechanical tests. Trask et al. [337] proposed a framework that is
capable of conducting multimodal inference for lattice metamate-
rials, relating their lattice design, stress–strain curves, and micro-
structural images. Lu et al. [46] designed a multifidelity neural
network for characterizing the mechanical properties of materials in
instrumented indentation. While these studies, among others, have
explored multimodality and multifidelity ML methods for solid
mechanics problems, further investigation is still needed to better
integrate data with multimodality and multifidelity from experi-
ments and/or simulations to provide a deeper understanding of the
mechanics of materials and structures.

4.3 Estimating and Reducing the Uncertainty of Machine
Learning Predictions. MostML applications in experimental solid
mechanics provide a point estimation—that is, a single value as the
best estimate. To further acquire information regarding the
reliability and confidence of such an estimation, one sometimes
needs to quantify and/or reduce the uncertainty of the ML
predictions. In the context of experimental solid mechanics, there
are diverse sources of uncertainties coming from data and models
related to almost every component in the research workflow,
including (1) experimental implementation, such as the uncertainty
of material properties caused by the manufacturing of specimens,
inaccurate enforcement of the experimental setup (e.g., boundaries
that are not perfectly clamped, approximate fulfillment of plane
strain/stress condition), representativeness and noisiness of data; (2)
theoretical modeling, such as the misspecification/oversimplifica-
tion of constitutive models, ignoring dynamic effects, ignoring
length scale effects, typical in micro- and nanomechanics, as well as
continuum assumptions, neglecting material and/or geometric
nonlinearity, and stochasticity; (3) numerical modeling, such as
finite element discretization, inaccurate force fields in molecular
dynamics simulation. On top of these three aspects of uncertainty,
ML methods (especially NN-based methods) introduce a few
additional sources of uncertainty, including the choices of model
architecture and hyperparameters, stochasticity in the training
process, and transferability of the trained model, making the
accurate quantification of total uncertainty a complex and time-
consuming endeavor.
Uncertainty quantification (UQ) is a discipline of science

focusing on identifying, quantifying, and reducing uncertainties
associated with models, numerical algorithms, experiments, and
predicted outcomes or quantities of interest [338]. It is a broad area
that has been studied extensively and is not exclusively applicable to
machine learning methods. For detailed UQ methods and their
applications in ML, readers are referred to related textbooks and
reviewpapers [339–341].Here,we briefly reviewa fewUQmethods
that are extensively applied to estimating and reducing uncertainty
in the context of ML applications in experimental solid mechanics.
To quantify the uncertainty of mechanics systems, one of the most
widely adopted classes of methods is the Bayesian procedure. Built
upon the well-established, century-old Bayes’ theorem [277], the
Bayesian procedure seeks to infer the posterior distribution of
variables based on prior knowledge and measured data. Specific
examples of methods involving the Bayesian approach include the
use of Gaussian process regression for modeling the nonlinear

behavior of solids [342], the creep behavior of concrete [343], and
metamaterial design [316], aswell asNNs for crystal plasticity [344]
and multiscale modeling of nanocomposite [345]. These studies, by
employing the Bayesian procedure, provide a distribution of the
quantities of interest rather than a single output. Another prevalent
technique is the ensemble method, which combines a group of base
(weak) models, which differ by the algorithm, hyperparameter,
training data, and/or random seeds, to provide more accurate, more
robust predictions. Theymay be applied tomachine learningmodels
such as decision trees (random forests), support vector machines,
and neural networks. Through this method, one may estimate the
uncertainty of the prediction according to the spread among base
models as well as reducing the uncertainty by combining these
models into an ensemble for enhanced predictive capability.
After training a machine learning model, one often needs to

validate it by testing the performance of the model on unseen data.
Aside from the simplest way of the train-test split of the dataset,
techniques including k-fold cross-validation, leave-one-out cross-
validation, and bootstrapping are often employed. These techniques
help to better assess the performance of the trained model and
estimate the uncertainty of predictions by efficiently utilizing the
available dataset. In addition to the foregoing methods related to
uncertainty quantification, some other commonly invoked techni-
ques and procedures include sensitivity analysis [346], Monte Carlo
simulations [347], and computation of confidence interval [348].
Note that the field of UQ has developed for decades, with numerous
methods proposed and investigated. In the foregoing context, we
have only provided a very brief, nonexhaustive list of UQ methods
that have been commonly used in mechanics. Finally, we comment
that there are still a lot of problems related to the quantification of
uncertainty associated with ML applications in mechanics. As we
analyzed at the beginning of this section, there are different sources
of uncertainty throughout the research workflow of experimental
mechanics,many ofwhich have not yet beenwell investigated. It is a
challenging yet worthwhile task to quantify the total uncertainty of
the experimental mechanics workflow addressing all relevant
sources of uncertainty.

5 Outlook: Future Opportunities of Machine Learning

in Experimental Solid Mechanics

5.1 Machine Learning For Experimental Mechanics Under
Extreme Conditions. In recent years, there has been an emerging
interest in characterizing material properties under extreme
conditions like high strain rate, high pressure, and high temperature.
However, such experiments are often considered laborious and
costly, requiring significant experiment preparation time. For
example, in conventional plate impact experiments, which charac-
terize dynamic properties of materials under high strain rates, the
experiment preparation time (e.g., sample preparation, optical
alignment, triggering circuits connection, and interferometry) alone
can take several days. Therefore, there is an increasing demand to
design big-data-generating experiments where new high-
throughput experimental techniques can be coupled with ML
methods to improve the efficiency of data collection and analysis.
One recent study by Jin et al. [70] demonstrated the benefits of big-
data-generating experiments in the context of material dynamic
fracture toughness and cohesive parameter determination. By
leveraging a high-throughput optical interferometer and CNN-
based MLmodel, the researchers were able to significantly increase
the experimental efficiency, reducing the required number of
experiments by orders of magnitude. These results highlight the
potential for ML to transform the field of experimental mechanics,
enabling researchers to characterize material properties more
efficiently and effectively under extreme conditions. Moving
forward, it will be crucial to continue to develop new experimental
full-field measurement techniques for experiments under extreme
conditions like spatial-temporal interferometer [70] or stereo DIC
[349] that can be effectively coupled with ML to generate and
analyze large volumes of high-fidelity data. By leveraging ML for
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extreme mechanics, experimentalists will be capable of character-
izing extreme material properties more efficiently and accurately,
enabling new insights and applications in designing next-generation
materials and technologies, e.g., earthquake protective coatings
used in architectural design.

5.2 Design of Intelligent ArchitectedMaterialsWith In-Situ
Decision-Making Capabilities. The design of materials with
decision-making capability is a relatively new concept that has the
potential to revolutionizematerial design by offering unprecedented
properties. With the help of ML, architected materials can be
programmed to respond to real-time stimuli based on external input.
Here, we present some potential research areas in which
experimental mechanics and ML can contribute to the development
of these intelligent architected materials. One such area is the
development of new fabrication techniques to build novel material
systems with high resolution. For example, new high-throughput
AM techniques, such as the hydrogel infusion AM method [350],
can be employed to fabricate architected materials with complex
geometries at a variety of scales. Furthermore, bottom-up
approaches such as self-assembly can be employed to spontaneously
organize nanoscale constituents into ordered structures through
intermolecular forces. Recently, scaling-up fabrication techniques
[351], like holographic lithography, were employed to build
centimeter-size samples with nanoscale features. Another area of
focus is the development of new actuationmethods.Current actuation
methods are mainly focused on passive actuation techniques like
mechanical or electromagnetic actuation while designing materials
with active actuation that can deform on demand according to local
environmental stimuli would confer intelligence to these materials.
Designing materials with active actuation would involve the
development of ML algorithms capable of optimizing material
structures and properties based on a set of design objectives and
constraints. For example, reinforcement learning algorithms could be
used to train materials to learn and respond to different loading
scenarios, leading to enhanced structural performance and durability.
Moreover, ML algorithms could enable materials to make intelligent
decisions in real-time based on environmental conditions, such as
changes in temperature, humidity, or mechanical loads. This opens a
wide range of potential applications for intelligent architected
materials in fields such as aerospace and robotics.

6 Conclusions

Recent advances in ML have revolutionized the field of
experimental solid mechanics, allowing for efficient and accurate
experimental design, data analysis, parametric or function identi-
fication, and inverse design. In this reviewpaper, we highlight recent
advances and applications of ML in experimental solid mechanics.
We started by providing an overviewof commonMLalgorithms and
terminologies relevant to experimental mechanics, with a particular
emphasis on physics-informed and physics-based scientific ML
methods. Then,we reviewed recent applications ofML in traditional
and emerging areas of experimental solid mechanics, including
fracture mechanics, biomechanics, nano- and micromechanics,
architected materials, and 2D materials. Furthermore, the review
discussed current challenges in applying ML to problems involving
data scarcity, multimodality, and multifidelity experimental data-
sets. It also advances several future research directions to address
such challenges. It is hoped that this comprehensive and up-to-date
review will provide valuable insights for researchers and practi-
tioners in solid mechanics who are interested in employing ML to
design and analyze their experiments. As the field continues to
evolve, it will also be essential to build bridges across disciplines,
with themost obvious being computationalmechanics andmaterials
sciences, to address challenges and opportunities.
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