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Abstract Future generations of transistors, sensors, and
other devices maybe revolutionized through the use of one-
dimensional nanostructures such as nanowires, nanotubes,
and nanorods. The unique properties of these nanostruc-
tures will set new benchmarks for speed, sensitivity,
functionality, and integration. These devices may even be
self-powered, harvesting energy directly from their sur-
rounding environment. However, as their critical dimen-
sions continue to decrease and performance demands grow,
classical mechanics and associated experimental techniques
no longer fully characterize the observed behavior. This
perspective examines the evolving role of experimental
mechanics in driving the development of these new
devices. Emphasis is placed on advances in experimental
techniques for comprehensive characterization of size
effects and their coupling, as well as assessment of
device-level response.
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Introduction

The International Technology Roadmap for Semiconduc-
tors (ITRS [1]) identifies emerging technologies with the
potential to sustain Moore’s Law. A necessary succession
from planar CMOS to non-planar/dual-gate CMOS, and
ultimately to novel architectures such as nano-electrical and
nano-electro-mechanical systems (NEMS) is envisioned.
This potential is emergent in numerous demonstrations of
outstanding and often unique performance and functionality
of devices constructed from one-dimensional nanostructures
(e.g., nanowires, nanotubes, and nanorods). These demon-
strations include ultra-sensitive chemical and biological
detection (down to single viruses) [2—8], nano-scale energy
harvesting [9-14], photonic waveguides [15], nano-scale
transistors [16, 17], ultra-fast electrical switching [18, 19],
low leakage and high on/off ratios [20], high integration
levels [21, 22], and outstanding current-carrying capacity
[23, 24].

The ITRS also identifies critical roadblocks currently
precluding advances beyond CMOS to nanostructure-based
device architectures. For example, primary among the
roadblocks to NEMS are poor reliability, poor uniformity
in the nanostructures from which they are constructed, and
manufacturing challenges related to manipulating large
numbers of nanostructures into well-ordered arrays. Under-
standing the mechanics of these nanostructures, and their
coupling to other domains (e.g., electro-mechanical coupling),
is thus critical to overcoming the roadblocks laid out by the
ITRS, as well as meeting technological requirements beyond
those of the semiconductor industry.

As these devices shrink exponentially and their perfor-
mance continues to improve, they similarly demand
increasingly powerful experimental techniques to charac-
terize them unambiguously. Numerous theoretical and
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experimental studies report a size dependence of material
properties occurring with enhanced surface-to-volume
ratios at the nanoscale [25-28]. The task of probing size-
related effects becomes increasingly challenging as speci-
men sizes continue to shrink. From an applications and
device development perspective, it is crucial to accurately
characterize mechanical properties wherever the nanostruc-
tures experience mechanical deformation to achieve function-
ality. This is key to ensuring reproducibility in performance
and overall device reliability. Taking nanogenerators as an
example, piezoelectric nanowires are mechanically deformed
to generate electrical energy [10, 1214, 29]—therefore, it is
important to know the forces required for deformation, as
well as the limits to the nanostructures’ deformability.
Beyond the purely mechanical properties of the nanogener-
ator, it is also important to characterize the coupling between
forces applied to the nanowires and the corresponding
voltages generated across them.

Experimental characterization techniques are progressing
rapidly as the field pushes for greater functionality and
integration from the next generation of devices. These
advances will likely be facilitated not only by exploiting the
unique mechanics of one-dimensional nanostructures [30],
but also their coupling to other physical domains. This
perspective examines the evolution of these techniques as
they facilitate development of next-generation one-
dimensional nanostructure-based devices, ultimately on a
mass scale. This encompasses studies ranging from charac-
terization of fundamental mechanics and their multiphysics
coupling, size effects in these properties, as well as device-
level evaluation of performance metrics and failure modes.

Characterizing the Mechanics of One-Dimensional
Nanostructures

As their critical dimensions shrink toward quantum limits, the
physical behavior of materials no longer necessarily follows
classical mechanics. Following the quest of “smaller being
stronger”, experimental and computational techniques have
evolved rapidly over the past decade. This has allowed
researchers to move beyond the realm of thin films [27, 31—
33] and micro/nanopillars [26] to probe sub-100-nanometer
length scales, where size-dependent material behavior
becomes more prominent. As opposed to micro/nanopillars
(as low as 250 nm in diameter), which can be tested using
well-established nanoindentation-based methods [34-37],
thinner 1-D nanostructures with larger aspect ratios pose
additional challenges. Various direct and indirect experimen-
tal techniques have either been adapted from larger-scale
methods or developed specifically to investigate the me-
chanics of one-dimensional nanostructures. These techniques
can broadly be categorized in the following domains: (i) in
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situ dynamic resonance tests; (ii) Atomic Force Microscopy
(AFM)-based tests (some performed in situ electron micro-
scopes); (iil) micromechanical testing platforms, and; (iv)
microelectromechanical system (MEMS)-based testing.

In dynamic resonance tests, the nanostructure of interest
is clamped at one end to an electrode and resonated either
thermally or electrostatically via an opposing electrode [38—
40] [Fig. 1(a)]. An alternating voltage of tunable frequency
is applied across the two electrodes. This experiment is
conducted in situ an electron microscope such that the
applied driving frequency can be tuned to match the natural
frequency of the nanostructure. Since the integration time
required to capture an image in electron microscopes is
significantly longer than the period of the nanostructure
vibration, the resonating nanostructure appears blurred in
the image. The resonant frequency is identified by
sweeping the driving frequency to maximize the envelope
of vibration in the image. The Young’s modulus can then be
calculated based upon the measured resonant frequency.
This method has been applied to study ZnO nanowires [39],
GaN nanowires [41], and CNTs [38, 40].

In addition to resonance-based tests, atomic force micros-
copy (AFM) has also been applied extensively to characterize
the mechanical properties of 1-D nanostructures. Here the
extremely high force and displacement resolutions are
exploited for finely-controlled experiments. The conventional
AFM has in general been extended to mechanical character-
ization of 1-D nanostructures [Fig. 1(b)] in one of three
configurations, all of which use the AFM cantilever as a load
and displacement sensor: (i) fixed-fixed specimen configu-
ration in lateral force mode [42]; (ii) fixed-fixed specimen
configuration with load applied normal to the plane of the
substrate in contact force mode [43]; (iii) singly clamped
specimens where the free end is displaced in lateral force
mode [44]. In each of these configurations, the specimen is
loaded in bending or tension by controlling the motion of the
AFM cantilever in the direction of loading. In addition, a
new AFM-based technique referred to as Contact
Resonance-AFM (CR-AFM) has been developed which
relies on the changes in the dynamic response of an AFM
cantilever when it interacts with a substrate versus when it is
interacts with a nanowire [45, 46]. The differences in
resonance frequency response on the substrate and nanowire
can thus be used to infer the elastic properties of the
nanowire. While the AFM offers high force-displacement
resolution, it is limited in the sense that the direct
observation of deformation or failure mechanism during the
test is not possible. Therefore, researchers have also made
use of the AFM cantilevers alone as load and displacement
sensors to perform mechanical tests in situ electron micro-
scopes [47-51]. In these experiments [Fig. 1(c)], one or both
ends of the 1-D nanostructure are attached to AFM
cantilevers and a piezoelectric manipulator is used for
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Fig. 1 Overview of experimental techniques developed for mechanical characterization of 1-D nanostructures. For in situ electron microscopy
techniques, shaded area shows the field of view required to make a quantitative assessment of mechanical properties

controlled movement of the cantilever to apply desired
displacement controlled loading. By imaging the deflection
of the cantilevers using the electron microscope, the
corresponding force is determined.

Beyond the use of the AFM-based techniques custom-
ized for 1D nanostructures, development of microfabricated
micromechanical stages and MEMS-based testing platforms
has been pursued. For example, a customized test-bed is
developed with a gap between which the specimen is
placed [52]. One end of the test bed is fixed and the other is
attached to a customized stage used to apply displacements
using a piezoactuator [53]. The force is deduced by
observing the deflection of the freestanding folded beams
(with known stiffness) in situ an SEM [Fig. 1(d)]. The
displacement or the deformation of the specimen is
monitored by observing the motion of the displacement
markers. This technique allows uniaxial loading along with
the in situ capability; however, the field of view is
determined by the location of the displacement markers.
To overcome this limitation, a nanoscale-Material Testing
System (n-MTS, [54-56]) has been developed, which
exploits MEMS technology to acquire load and displace-
ment information electronically [Fig. 1(e)]. Therefore, one
can have a variable field of view and observe the specimen
with high resolution as desired.

The various techniques described above have built upon
each other, ulitmately leading to better understanding and
improved consistency of obtained results. For example,

Fig. 2 shows the scatter in measured values of elastic
modulus values and fracture strength reported for multi-
walled carbon nanotubes over the last decade. As techniques
evolved, the initially widely-scattered reported results have
converged toward theoretical predictions [57]. Similar
converging trends have also been observed for other
nanostructures, including semiconducting zinc oxide [58,
59] and gallium nitride [60]. Figure 3 shows the elastic
modulus reported for zinc oxide (ZnO) nanowires as a
function of their characteristic size, using different experi-
mental techniques. Similar to the results for carbon nano-
tubes, the scatter in experimental data for ZnO nanowires
was also significant until recently when the size dependent
elastic response was characterized using a combined
experimental-computational approach [58]. The reasons for
improved accuracy are discussed in the specific references.

Characterizing Electro-Mechanical Coupling
in One-Dimensional Nanostructures

Coupling between physics domains (e.g., electro-mechanical
coupling) enables additional degrees of device functionality.
Strong size effects in this coupling can further be leveraged
to achieve greater gains in performance from nanostructure-
based devices relative to larger counterparts. For example,
the piezoresistive response of silicon nanowires was shown
to be two orders of magnitude greater than that of bulk
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silicon [61]. Thus by using silicon nanowires, a new level
of sensitivity in electromechanical strain sensors can be
achieved that would otherwise not be possible with micro-
scale silicon components. Given the multiphysics coupling
and the potential for strong size effects, purely mechanical
experimental techniques must further be adapted to simul-
taneously characterize electrical response or input.

Coupling Through Electronic Band Structure

In carbon nanotubes, the mechanical and electrical
responses are coupled through the band structure. Straining
the graphene lattice can either open or reduce the bandgap,
changing the overall conductance of the nanotube [62—-65].
Whether the conductance increases or decreases depends on
the chirality of the CNT [62]. In the case of most metallic
CNTs (with the exception of armchair chiralities whose
symmetry is maintained under tensile strain), tensile strain
opens the bandgap, resulting in a significant increase in
resistance. For semiconducting CNTs, depending on their
specific chirality, conductance will either increase with
tensile strain through creation of a dip in the energy bands,
or decrease due to further opening of the bandgap [62]. The
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Fig. 3 Young’s modulus of ZnO nanostructures as a function of their
characteristic size obtained using different experimental techniques
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bandgap of various nanowires has similarly been demon-
strated to be affected by strain [66, 67].

The effect of strain on the bandgap and conductivity of
carbon nanotubes has most commonly been assessed
through AFM-based techniques, and supplemented with
computational analyses [62—65, 68]. These techniques
leverage the high force and displacement resolution of the
AFM. Other techniques used two- and four-probe measure-
ments to identify local barriers created by sharp bends in
the CNT [69]. Pioneering AFM-based techniques employed
sharp AFM probes to deflect single-walled carbon nano-
tubes suspended in a fixed-fixed configuration between two
metal contacts [63, 68] (similar to that shown in Fig. 1(b)).
The large changes in conductance with strain were believed
to be the result of either large local deformation at the point
of the sharp probe contact resulting in formation of local
sp” bonds [63], or alteration of the bandgap [70, 71]. Later
work, which used a similar AFM-based technique with the
additional ability to use the AFM as a gate electrode,
demonstrated experimentally that this was indeed the result
of strain-induced alteration of the bandgap [62]. This
enabled simultaneous characterization of conductance as a
function of both strain and gate voltage. Subsequent
comparison to computational/theoretical results enabled
estimation of the chirality of the CNT sample, as well as
the strain-bandgap relation. Later work sought to reduce
spurious effects (e.g., the effect of the sharp probe locally
deforming the CNT), by using more advanced constraints.
For example, by fixing the CNT at one end [64] (or both
[65]) to a rigid support and the other end (or center) to a
flexible beam, the flexible beam could be deflected using
the AFM probe to strain the CNT, rather than directly
contacting the CNT with the probe.

Coupling Through Piezoelectric and Piezoresistive Effects
Piezoelectric or piezoresistive effects provide another

potential mechanism by which the mechanical and electrical
response of the nanostructure maybe coupled. Since the
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mechanical properties, particularly fracture stresses and
strains, improve significantly (5-6% strain at failure as
opposed to <1% for bulk materials), 1D nanostructures also
constitute ideal candidates for devices where mechanical
deformation is inevitable to achieve functionality. In addition
to high deformability, the miniature sizes of these nano-
structures offer an additional advantage over their macroscale
counterparts, i.e., the forces required to deform them are small
enough to be derived from renewable sources of energy like
flowing water, wind energy, etc. Therefore, the conversion of
vibrational and mechanical energy into electricity using
piezoelectric nanoscale materials is emerging as an effective
route alongside the more extensively studied solar and thermal
based methods [72—76]. This approach, in the long-term, can
lead to the development of self powered devices, which gain
their energy from the environment through self sustained
energy resources. Increasingly, this area of research is being
explored by taking advantage of piezoelectric phenomena to
harvest and store energy using nanoscale materials [12, 29,
77]. Still, we lack a fundamental understanding of the
enhancement in piezoelectric effects which can be achieved
by reducing the characteristic size scales of the materials,
particularly piezoelectric nanowires.

A great deal of work has individually addressed the
electrical [78-80] or mechanical [56, 81-86] behavior of
nanostructures. However, electromechanical coupling and
its potential size-effects, have not been thoroughly
addressed. Due to difficulties in sample manipulation at
the nanoscale, electrical measurements are typically based
on positioning electrical connections in contact with as
dispersed or as grown samples on a substrate, with minimal
sample manipulation. Some examples of this are electrical
measurements based on conductive atomic force microscopy
on individual NWs [78], conventional electrical measure-
ments on forests of NWs [80], and microfabrication of
electrodes on as-deposited NWs for electrical measurements
[79]. While these approaches are suitable for electrical
measurements, they cannot be adapted for electromechanical
stimulation and measurements. A few initial experimental
approaches have been applied to measure the piezoelectric
properties of NWs beginning to address the challenge of
coupled electro-mechanical measurements. The majority of
these are again AFM-based methods, most notably utilizing
the technique of piezoresponse force microscopy (PFM)
[87-90]. While such AFM based techniques are straight
forward to apply experimentally to as grown nanostructures,
they do not provide a well defined method of measuring and
interpreting piezoelectric properties. Limitations of these
methods include: (i) determining the electrical properties of
the AFM tip/specimen contact; (ii) loading configurations
which do not allow uniaxial straining measurements
(typically leading to complex and poorly defined stress
distributions); and (iii) significant systematic errors in the

calibration of force sensors. Alternative methods based on
measuring the shift in resonance frequency of NWs have
also been presented which report order of magnitude
increases in piezoelectric constants for ZnO [91]. Resonance
based methods, however, also lead to non-uniaxial deforma-
tion as well as complexities in analysis and data interpreta-
tion. The piezoelectric coefficients determined from various
studies show a large scatter for a given characteristic size, as
summarized in Fig. 4.

This emphasizes the need for development of alternative
experimental techniques to achieve unambiguous charac-
terization and interpretation of the piezoelectric effect. One
such technique is based on augmentation of the MEMS-
based platform developed by Espinosa and co-workers. By
insulating the platform on which the specimen is mounted
from remaining electronic circuitry required for mechanical
loading, the specimen’s electrical response is simultaneously
probed white it is being mechanically deformed. With this
modification to the MEMS-based uniaxial tensile testing set-
up, one can probe the electromechanical response in a
straightforward manner with minimal assumptions. Figure 5
shows a set of [-V curves obtained on doped and undoped
GaN nanowires as a function of applied uniaxial tension.
The non-linear electrical response suggests non-ohmic
behavior which highlights another challenge of obtaining
good electrical contacts with the specimen and to ensure that
the actual material properties are not influenced by the
behavior of electrical contacts. In this vein, further mod-
ifications are envisioned allowing for four-point electrical
measurements.

Device Level Testing and Analysis of Failure Modes

As outlined by the ITRS, improving the reliability of
devices constructed from 1-D nanostructures represents a
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critical challenge in their development [1]. Beyond com-
prehensive knowledge of the fundamental behavior of the
nanostructures themselves (as described above), this
requires an analysis of the conditions encountered by the
nanostructures during normal operation (e.g., within a
NEMS device) and the corresponding modes of failure.
Characterization at the device level is inherently more
complex. Advanced device architectures lead to complex
loading states, mixed or ill-defined boundary conditions,
and in many cases, a highly dynamic response. For
example, nanoelectromechanical devices composed of
one-dimensional nanostructures can change states at
Gigahertz rates or faster [18, 19, 93]. Consequently, they
experience extreme (and coupled) mechanical, electrical,
and thermal loading in a period of nanoseconds or less.
Thus, while the primarily quasi-static techniques described
above are directly applicable in the design phase of these
devices, unique implementations or altogether different
methods are required at the device level.
Electromechanical characterization of NEMS constructed
from one-dimensional nanostructures is most commonly
conducted in situ the scanning electron microscope (SEM)
[21, 94, 97-101]. This enables high resolution imaging along
with the full suite of electronic characterization that would
otherwise be available ex sifu. For example, SEM imaging is
often used to determine physical device state (e.g., open or
closed switch), and correlate this state to corresponding
current-voltage measurements [21, 94, 97-99, 101]. Perhaps
more importantly in the context of improving reliability, this
also enables direct imaging of device failure [94, 99]. For
example, a parametric study into the design space of
freestanding carbon nanotube-based NEMS switches was
conducted in situ the SEM [94]. As shown in Fig. 6, this
enabled identification of prevalent failure modes (e.g.,
irreversible stiction between the carbon nanotube and
electrode, and ablation of the tip of the nanotube) and
mapping of their point of onset within the design space.
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Fig. 6 Results from in situ electromechanical characterization of
carbon nanotube-based nanoelectromechanical switches [94]. (a)
Schematic of the cantilevered nanotube device consisting of a single
carbon nanotube cantilevered over an electrode. (b) Map of various
failure modes identified through in situ characterization within the
geometric design space. The highly limited remaining region (white)
in which failure is avoided highlights the need for further develop-
ments to improve the robustness of these NEMS devices. Potential
solutions include the use of alternative electrode materials [94],
electrode surface coatings [95], and more complex actuation schemes
[21, 22, 96, 97] (By permission from Wiley)

However, the limited speed of imaging using electron
microscopy effectively limits assessment of mechanical
device state and failure modes to quasi-static analyses
(though the electrical measurements are not limited in
speed). For example, the switching time for these devices is
on the order of nanoseconds, versus an integration time of
seconds for high-resolution SEM imaging. As a result, the
device state before and after actuation is captured, but the
transient dynamics of the switching event itself (where, for
example, the most extreme mechanical deformations occur)
are lost. As the spatial and temporal resolution of electron
microscopy continues to advance [102, 103], it may
become possible to visualize these highly dynamic events
directly. In addition, as discussed further below, in situ
characterization using alternative tools (e.g., Raman spec-
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troscopy) will provide richer data beyond basic imaging to
correlate with corresponding electrical measurements.

Concluding Remarks

As the dimensions of one-dimensional nanostructures
continue to decrease, textbook mechanics begin to break
down in describing their behavior. Advances in experimen-
tal mechanics, such as those described herein, are thus
critical to fully understanding and leveraging the outstand-
ing properties of these unique structures. The rapid rate of
development in this field is evident in examining, for
example, the evolution of techniques used to characterize
the modulus and strength of carbon nanotubes. Within the
past decade, reported values for the modulus have
converged from more than an order of magnitude of scatter
to well within 10% of the theoretically-predicted modulus
[57]. A similar scenario occurred in the characterization of
NWs [58, 59]. Given these powerful experimental techni-
ques, a number of intriguing size effects have been
identified in the modulus, fracture properties, and electro-
mechanical coupling of one-dimensional nanostructures.

Ongoing developments will continue to advance our
understanding of the fundamental properties of smaller and
smaller nanostructures. In turn, this will push the development
of novel devices leveraging these nanostructures to set new
benchmarks in performance. Evolving in sifu techniques in
particular will continue to provide rich insight into funda-
mental and device-level characteristics.

With continued improvements in the spatial and temporal
resolution [102, 103], in situ electron microscopy tests will
advance from providing quasi-static imaging of overall
nanostructure response to capturing the dynamic response
with atomic resolution. The in situ combination of MEMS-
based characterization tools and high-end microscopy
techniques together can provide further insights on atomic
scale phenomena relevant at small scales. Moving beyond
DC MEMS-based techniques, incorporation of AC fields
will enable more detailed investigations into electromechanical
coupling and their size effects.

Beyond electron microscopy, other conventionally bulk
analysis tools are being pushed to characterize smaller and
smaller structures. Incorporating these techniques into in
situ analyses provides a new level of comprehensive
characterization. For example, Raman spectroscopy pro-
vides a wealth of information including chemical compo-
sition, bond structure and defect density, orientation, strain,
pressure, and temperature [104—113]. Near-field Raman
spectroscopy pushes the resolution further, going beyond
the diffraction limit to map properties in one-dimensional
nanostructures. Hybrid techniques combining FTIR, photo-
luminescence, and/or fluorescence imaging provide even

more flexibility. Finally, further in the future, it maybe
possible to conduct in situ tests using angle-resolved
photoemission spectroscopy (ARPES) measurements. This
will enable direct characterization of electronic band
structure and, for example, how it is affected by strain
during cyclic operation [114].

Thus, as dimensions continue to shrink and performance
demands grow, the role of experimental mechanics in
nanoscale device development continues to evolve. Con-
ventional macroscale techniques designed to provide well-
defined boundary and loading conditions have been scaled
down to micro-scale tools and loading stages. In the future,
these will evolve further to provide the same level of
comprehensive analysis at the device level to characterize
failure modes and their fundamental causes. Ultimately,
experimental mechanics will play a crucial role in the
development of next-generation sensors and electronics
promising revolutionary performance.
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