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Numerous experimental and computational studies have established that the hierarchical structures
encountered in natural materials, such as the brick-and-mortar structure observed in sea shells, are
essential for achieving defect tolerance. Due to this hierarchy, the mechanical properties of natural mate-
rials have a different size dependence compared to that of typical engineered materials. This study aimed
to explore size effects on the strength of bio-inspired staggered hierarchical composites and to define the
influence of the geometry of constituents in their outstanding defect tolerance capability. A statistical
shear lag model is derived by extending the classical shear lag model to account for the statistics of
the constituents’ strength. A general solution emerges from rigorous mathematical derivations, unifying
the various empirical formulations for the fundamental link length used in previous statistical models.
The model shows that the staggered arrangement of constituents grants composites a unique size effect
on mechanical strength in contrast to homogenous continuous materials. The model is applied to hierar-
chical yarns consisting of double-walled carbon nanotube bundles to assess its predictive capabilities for
novel synthetic materials. Interestingly, the model predicts that yarn gauge length does not significantly
influence the yarn strength, in close agreement with experimental observations.

� 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Hierarchical composite materials found in nature, such as nacre
shells, collagen fibrils, and spider silk, are well known for their bal-
anced strength and toughness [1–6]. Through staggered arrange-
ments of constituents (i.e., strong and stiff filaments embedded
in softer interfaces), natural composites can not only preserve
the stiffness and strength of the filaments during material scale-
up, but also achieve remarkable toughness. Microstructure charac-
terizations of these natural composites reveal a critical length scale
for each material that correlates to the two main failure mechan-
isms – filament fracture and interface sliding – to optimize macro-
scopic strength and toughness simultaneously [7–10]. Different
continuum models have been advanced to relate critical length
scales with mechanical properties of constituents, including key
contributions by Gao et al. [11], Chen et al. [12], Rim et al. [13],
Wei et al. [14], and Barthelat et al. [15]. Yet, these analyses were
conducted on models that had assumed only a specified flaw with
a predefined size and location. In practice, the location and size of
flaws are randomly distributed along the strong and stiff filaments,
and the number of flaw scales with the dimensions of filaments.
Thus, the stochastic nature of flaw distribution needs to be taken
into account in these continuum models. Following the pioneering
work by Rosen and Zweben [16,17], various micromechanical
models based on the weakest-link formulations have been pro-
posed to predict strength distributions for unidirectional fiber-re-
inforced composites [18–24]. All of them assumed that the
failure probability for an individual filament of length L under
stress a follows Weibull statistics is given by

Pf ðr; LÞ ¼ 1� exp � L
L0

r
r0

� �m� �
ð1Þ

where r0 and m are the scale and shape parameters, respectively,
and L0 is the reference filament length. Curtin proposed the charac-
teristic strength rc and length Lc [23], defined by

rc ¼
rm

0 sL0

r

� �1=ðmþ1Þ

and Lc ¼
r0rL1=m

0

s

 !m=ðmþ1Þ

ð2Þ

where r is the filament radius. Physically, Lc is twice the length
around a filament break that is required for the stress in the fila-
ment to recover linearly to the characteristic stress rc with the
assumption of a constant sliding resistance s (i.e. Lc ¼ rrc=s).
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Fig. 1. Schematic of the 2D unit cell used in the statistical shear lag model
simplified from the brick-and-mortar structure of a hierarchical staggered
composite.
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During studies of size effects in composite strength using statistical

models [20,21,24–26], a fundamental link length L̂ arose – it is the
minimum link length below which the weakest-link scaling is not
applicable to predict the strength distribution of a realistic compos-

ite with a total length LTiiL̂. Phoenix et al. suggest L̂ ¼ aLc with

a � 0:4 [21], and Landis et al. suggest L̂ ¼ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3pE=G

p
r with b � 6

and E and G are the elastic modulus and shear modulus of the fila-
ment and interface, respectively [25]. However, as noted in both
reports, the coefficients a and b may vary with the constituent
mechanical properties and arrangements, so they have to be deter-
mined through intensive Monte Carlo simulations.

In this study, by introducing the statistical shear lag model, we
developed a mathematical framework that yielded a more general
formulation. This formulation solves the ambiguity in the funda-
mental link length scale and unifies the previous models. Moreover,
the statistical shear lag model was implemented into a multiscale
statistical model to explain how staggered hierarchical structures
achieve superior flaw tolerance.
2. Statistical shear lag model

In our previous study, the classical shear lag model was used to
describe the optimal length scale in staggered composites that
simultaneously optimize their strength and toughness [14]. As
shown in Fig. 1, a simplified 2D unit cell was constructed to study
the load transfer efficiency between two adjacent filaments (with a
thickness denoted as b) bonded by a thin soft interface layer (with
a thickness denoted as h) over the length L. A tensile normal stress
rapp is applied at the right end of the top filament, and the left end
of the bottom filament is fixed in the axial direction but is free to
deform in the lateral direction. The left end of the top filament
and the right end of the bottom filament are traction-free and free
to displace. Assuming the filaments and interface deform elastical-
ly, the solutions for axial tensile stress along the top and bottom
filaments are expressed as

r1ðxÞ ¼ rapp

sinh kL
2ð Þ

sinh kx
2

� �
cosh kðL�xÞ

2

	 

r2ðxÞ ¼ r1ðL� xÞ ¼ rapp

sinh kL
2ð Þ

cosh kx
2

� �
sinh kðL�xÞ

2

	 
 ð3Þ

respectively. In Eq. (3), k ¼
ffiffiffiffiffiffi
2G
Ehb

q
in which E is the elastic modulus of

the filament and G is the shear modulus of the interface.
Filament rupture and interface sliding were assumed to be the

only two failure mechanisms that determine the composite
strength. The classical shear lag model is based on several key
assumptions. First, the filaments are treated as one-dimensional
springs so that the transversal stress and variations in axial stress
are neglected. Second, the interfaces carry no tensile but only shear
load controlled solely by the relative displacements of filaments
adhered to the interface regions. Microscopic characterizations sug-
gest that the tensile strengths of reinforcements in natural compos-
ites spread widely due to variations in dominant defects [27]. In this
study, we modified the classical shear lag model to account for the
statistics in the tensile strength of reinforcements while keeping
the key assumptions for the classical shear lag model.

Assuming the tensile strength of individual filaments follows
the Weibull distribution function given by Eq. (1), the failure prob-
ability for a filament subject to a nonhomogeneous uniaxial stress
state takes the integral form [28,29]:

Pf ¼ 1� exp �
Z

L

rðxÞ
r0

� �m dLðxÞ
L0

� �
; ð4Þ

where rðxÞ is the distribution function of the effective uniaxial
stress over the sample length L. Clearly, Eq. (4) suggests that both
the material dimension and loading conditions affect the structural
strength. Substituting Eq. (3) into Eq. (4), the probability of the rup-
ture of any two filaments in the unit cell is given by

Pf ðrappÞ ¼ 1� exp � 2
L0

R L
0

r1ðxÞ
r0

	 
m
dx
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R L
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:
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;
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in which L0 is the reference length for the filament in the simplified
2D unit cell. By defining the effective length

Leff ðLÞ ¼
Z L

0

1
sinhðkL=2Þ cosh

k
2
ðL� xÞ

� �
sinh

kx
2

� �� �m

dx; ð6Þ

we can rewrite Eq. (5) as

Pf ðrappÞ ¼ 1� exp �2Leff

L0

rapp

r0

� �m� �
: ð7Þ

Eq. (7) suggests that the probability of the unit cell failing by
filament rupture follows a Weibull distribution, which possesses
the same shape parameter as the Weibull distribution of the mono-
lithic filament rupture strengths. The new Weibull distribution for
the rupture strength of the unit cell takes the form

Pf ðrappÞ ¼ 1� exp � rapp

r0;uc

� �m� �
ð8Þ

where r0;uc ¼ r0
L0

2Leff

	 
1=m
is the scale factor for the unit cell rupture

strength.
The statistical shear lag model introduced above facilitates the

investigation of the statistics of unit cell rupture strengths as a
function of overlap length. For a filament material whose strength
has a Weibull distribution, the unit cell rupture strengths also fol-
low Weibull statistics with a scale factor that is a function of the
overlap length, as shown in Eqs. (6) and (8). The variance of the
Weibull distribution for unit cell rupture strength is

r2
0;uc½Cð1þ 2=mÞ � ðCð1þ 1=mÞÞ2�. Alternatively, the unit cell can

also fail by filament–filament sliding. For a linear elastic interface,
the unit cell fails in sliding when rapp ¼ 2sf =ðbkÞ tanhðkL=2Þ, in
which sf is the interface shear strength [14]. Note that when scal-
ing unit cells up to a macroscopic composite, the effective stress
applied on the unit cell is reff ¼ rappb=ð2bþ hÞ. When the interface
is thin (i.e., hhhb), reff equals approximately rapp=2.

To demonstrate the two competing failure mechanisms within
the unit cell, a case study was performed on yarns made of dou-
ble-walled carbon nanotube (DWCNT) bundles (see Fig. 2a) [30].
Each unit cell contains a pair of parallel DWCNT bundles. Statistics
of bundle strength have been obtained through previous in situ
SEM tensile experiments on 21 individual bundles with an average



Fig. 2. (a) Schematic depicting the hierarchical structure of a macroscopic DWCNT yarn. Each unit cell in the yarn consists of two parallel DWCNT bundles. (b) Weibull
analysis of the individual bundle rupture strength. (c) Simulated fit using the shear lag model of experimental shear strengths measured for two parallel DWCNT bundles. (d)
Plot of the effective unit cell strength as a function of the unit cell length (overlap length). The unit cell strength determined by interface sliding is plotted in blue and by
bundle rupture is plotted in black. Each black square represents the scale factor of the Weibull distribution function of the unit cell rupture strength at a particular overlap
length. The error is the square root of the variance for each Weibull distribution function.
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diameter of 25 nm and length of 5 lm [30–33]. After ordering 21
strength values ascendingly and defining Pi ¼ 100ði� 0:5Þ=21 as
the sample percentile (i ¼ 1; � � � ;21), the set of strength values
was fitted with the Weibull distribution function given by Eq. (1)
to yield a scale factor of r0 ¼ 2:8 GPa and a shape factor m ¼ 2:2
(Fig. 2b). Note that the stress on a bundle in this study is defined
as the load divided by the cross-sectional area of all carbon nan-
otube shells within the bundle. The mechanical properties of the
interface were investigated through in situ SEM shear tests on
pairs of parallel bundles [32]. A pair of bundles aligned parallel
to one another with various overlap lengths was pulled on the
opposite ends of the bundles with the force to break the junction
recorded. As shown in Fig. 2c, tensile stresses required to slide
19 pairs of bundles were plotted as a function of overlap lengths.
Previous coarse-grained simulations suggested that the interface
between parallel bundles has a thickness h � 2:5 nm [32]. The
equivalent filament thickness b is approximated as half of the the
bundle radius r. Fitting the results with the classical shear lag mod-
el solution rapp ¼ 2sf =ðbkÞ tanhðkL=2Þ yield an interface shear
strength sf ¼ 350 MPa and an effective interface shear modulus
G ¼ 10 MPa. The properties of DWCNT bundles and interfaces are
summarized in Table 1. Combining the results from the classical
Table 1
Mechanical properties of DWCNT bundles and bundle–bundle interface.

Bundle Equivalent half filament thickness, b
(nm)

Elastic modulus, E
(GPa)

Strengt
(GPa)

6.2 60 2.8

Interface Interface thickness, h (nm) Effective shear modulus, G (MPa

2.5 10
shear lag model and the statistical shear lag model, the effects of
both failure modes on the unit cell strength are shown in Fig. 2d.
The final unit cell strength is the smaller of the two strength values
predicted by the statistical shear lag model and the classical shear
lag model. The critical overlap length (or unit cell size) ~L where the
classical and statistical shear lag model solutions intersect gives
the optimized unit cell strength and can be determined by
numerically solving the following equation

r0
L0

2Leff ð~LÞ

 !1=m

¼ 2sf

bk
tanh

k~L
2

 !
: ð9Þ

For unit cells smaller than ~L, the scale factor r0;uc fails to describe
the unit cell strength due to the interface sliding, and thus is invalid
for weakest-link model for size-scaling the composite strength. In
other words, ~L has the same physical meaning as the aforemen-

tioned fundamental link length L̂. Moreover, we can show that Eq.
(9) is a more general solution that can be simplified to the formula-
tions proposed previously [21,25] under specific conditions.

When m > 1, the effective unit cell length Leff given by Eq. (6) is
bounded by two limits
h scale factor, r0 Strength shape factor,
m

Reference bundle length, L0

(lm)

2.2 5

) Shear strength, sf (MPa)

350



Fig. 3. Schematic of the method used to scale up the statistical shear lag model. The unit cell for the shear lag model (top left) is simplified as an element (top right) that has
two failure modes (filament–filament sliding or filament rupture). A macroscopic hierarchical composite consisting of M � N unit cells (bottom left) is simplified into the
statistical model of M � N elements (bottom right). The cross-section is represented in the axial direction as a chain of N Daniel’s bundles, and in the lateral direction as M
parallel elements.
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L
mþ 1

> Leff >
L

2m : ð10Þ

Leff approaches the upper limit for a small k (meaning the interface
is very soft compared to the filament) and approaches the lower
limit for a large k. Thus, for a small k, Eq. (9) can be approximated as

r0
L0ðmþ 1Þ

2~L

� �1=m

� sf

b
~L ð11Þ

Solving Eq. (11) yields ~L ¼ r0bL1=m
0

sf

mþ1
2

� �1=m
� �m=ðmþ1Þ

. Substituting

the equivalent filament thickness b / r=2 for cylindrical filaments
into this solution suggests that ~L derived here has essentially the
same functional form as the one proposed by Phoenix et al. with
only a slight change in the coefficient [21]. It is clear that as m

decreases, a larger critical link length ~L is required to apply weak-
est-link scaling. This is consistent with the observation in the Mon-
te Carlo simulations by Landis et al. [25]. Similarly, for a large k, Eq.
(9) can be approximated as

r0
L02m

2~L

� �1=m

� 2sf

bk
ð12Þ

Solving Eq. (12) yields another typical solution ~L ¼ r0
sf

ffiffiffiffiffiffi
2Gb
Eh

q	 
m
L0
2 .

This solution takes similar functional form as the one proposed by
Landis et al., yet includes more constituent mechanical properties
and geometries [25]. Therefore, through rigorous mathematical
derivation, the statistical shear lag model developed herein pro-
vides a more general solution that solves the ambiguity in the fun-
damental link length scale obtained in previous statistical models
for fiber-reinforced composites, bridging the gap between earlier
theories.

3. Size effects in hierarchical composites

To extend the statistical shear lag model for evaluating the
strengths of hierarchical composites, the following strategy was
employed where the mechanical behavior of the unit cell was used
as an input to investigate how the size of a macroscopic hierarchi-
cal composite is related to its strength. First, the unit cell (with
length L P ~L) was simplified as an element consisting of two
sub-elements connected in series; one sub-element represents fila-
ment rupture, and the other represents filament–filament sliding
(see Fig. 3). Therefore, a hierarchical composite consisting of
M � N unit cells can be simplified into the statistical model
consisting of M � N elements. The cross-section of the composite
is modeled as a Daniels’ bundle of M parallel unit cells aligned in
the lateral direction that are evenly clamped at both ends [34].
Along the axial direction, the composite is simplified as a chain
of N Daniels’ bundles connected in series such that the composite
has a total length Lcomp ¼ N � L. Daniels’ theory suggests that the
strength of a bundle consisting of M unit cells whose strength dis-
tribution is a Weibull probability function exhibits a Gaussian dis-
tribution expressed as

Gðreff Þ ¼ 1
2 1þ erf reff�lffiffiffiffiffiffi

2d2
p

� �� �
in which;

l ¼ 1
m

� �1
m exp � 1

m

� �
r0;eff ;

d2 ¼ 1
M

1
m

� �2
m exp � 1

m

� �
½1� exp � 1

m

� �
�ðr0;eff Þ2; and

r0;eff ¼ r0;un
b

ð2bþhÞ

ð13Þ

The strength of a composite consisting of N serially connected
Daniels’ bundles is governed by the weakest bundle and thus is dis-
tributed as

Hðreff Þ ¼ 1� ½1� Gðreff Þ�N : ð14Þ

As shown by Phoenix and Raj [19], the Weibull approximation
to Hðreff Þ takes the form

Hðreff Þ � 1� exp � r
r0
	 
m0

� �
; ð15aÞ

with the composite Weibull scale factor r0 given by

r0 ¼ lþ d
logðlogðNÞÞ þ logð4pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8 logðNÞ
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logðNÞ

q" #
; ð15bÞ

and the composite shape factor m0 given by

m0 ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logðNÞ

p
d

þ 2
logðlogðNÞÞ þ logð4pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 logðNÞ
p � logðNÞ

" #
: ð15cÞ
4. Results

Clearly, there is a size effect with respect to the strength of com-
posites with different hierarchies as a function of the filament
material (Eq. (1)), the unit cell (Eqs. 6–8), and the composite size
(Eqs. (13), (14), (15a), (15b), (15c)). To illustrate this size effect, a
case study was performed on a DWCNT yarn consisting of unit cells
with an overlap length of 2.5 lm. The yarn contained 103 elements
in the lateral direction and 106 Daniels’ bundles in the axial



Fig. 4. Probability density functions for different hierarchies in the DWCNT yarn. (a) The probability density functions of the DWCNT bundle rupture strength and unit cell
strength obtained from Eqs. (1) and (8); (b) the probability density functions of the Daniels’ bundle strength (consisting of 103 unit cells) and the macroscopic yarn strength
(consisting of 106 Daniels’ bundles) obtained from Eqs. (13) and (14).

Fig. 5. The predicted strength of the hierarchical DWCNT yarns as a function of yarn
length demonstrates the suppressed length scale sensitivity. Experimentally
measured DWCNT yarn strength at various gauge lengths are included to compare
with the model prediction (the error represents the standard deviation of yarn
strength).

Fig. 6. Schematic representation of multi-level hierarchical composites exhibiting a trans
level, during material scaling-up.
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direction. Fig. 4 shows the probability density distributions for the
strengths of 2.5 lm long and 30 nm diameter DWCNT bundle, a
unit cell, Daniels’ bundle of 103 elements (with a diameter of
approximately 30 lm), and a chain of 106 Daniels’ bundles (i.e. a
2.5 m long yarn). The Weibull distributions for DWCNT bundles
and unit cells share the same shape factor, while the scale factor
for the unit cell strength is lower than that for the DWCNT bundle
strength. The strength of the yarn’s cross section shows a Gaussian
distribution. In contrast, the strength distribution of a chain of 106

Daniels’ bundles exhibits a Weibull distribution function profile.
Fitting the data yields a scale factor of approximately 0.9 GPa and
a very high shape factor of 195, in excellent agreement with the
Weibull approximation (0.9 GPa and 203) given by Eqs. (15b) and
(15c). This much higher shape factor as compared with that of
2.2 for individual DWCNT bundles indicates an increase in reliabil-
ity as yarn length increases, which is consistent with previous
reports [24].

More interestingly, the statistical model explains why a
hierarchical structure is so important in material scaling up – from
ition of strength statistics from Weibull to Gaussian to Weibull, at each hierarchical
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nanoscale constituents to macroscopic composites. Fig. 5 shows that
the mean strength value for the DWCNT yarn (a discontinuous hier-
archical composite) depends barely on the yarn length – when the
yarn length increases by 104 times (from 2.5 lm to 2.5 � 104 lm),
the mean yarn strength drops by only 10% (from 1 to 0.9 GPa). The
model prediction agrees very well with the results of tensile experi-
ments on DWCNT yarns [35]. The experimentally measured mean
strengths at various yarn gauge lengths agree with the model pre-
dictions and do not show appreciable length dependence. Insensi-
tivity of strength with respect to gauge length has also been
observed in other composites containing natural or synthetic fibers,
such as sisal fibers and carbon fibers [26,36,37], as they share the
same deformation mechanisms. By obtaining the mechanical prop-
erties of the constituents through micromechanical experiments,
this model could potentially be applied to those composites to gain
further insights into the microstructure–property relationships.
Thus, understanding why the hierarchical structures are common
in most of the natural composites is straightforward – through this
approach, which reveals the ability of discontinuous staggered com-
posites to re-distribute load over characteristic length scales that
are functions of constituent geometry and mechanical properties.
Hence, macroscopic natural composites can preserve remarkable
mechanical properties when scaling up from the filaments usually
in the nm or lm length scales.

5. Discussion

Finally, it is worth to note that the statistical models previously
introduced can be applied to composites with nested hierarchical
structures (as shown in Fig. 6). With the strength of the building
block at level 0 following a Weibull distribution, based on the
above result, at level 1 the statistics of strength starts with a Wei-
bull distribution for the unit cell, then transitions to a Gaussian dis-
tribution when the material scales in the lateral direction, and
finally returns to a new Weibull distribution when the material
scales in the axial direction (to form a fibril). It is obvious that
the fibril at the end of the hierarchical level 1 serves as reinforce-
ment for the unit cell at level 2. According to the statistical shear-
lag model, the strength of the unit cell at level 2 should follow a
Weibull distribution as well. Replicating this procedure suggests
that this Weibull–Gaussian–Weibull distribution transition repeats
at each hierarchical level according to Eqs. 6, 7, 8, 13, 14, 15a, 15b
and 15c. Therefore, the statistical model developed in the current
study is a self-consistent multi-scale model that can predict the
mechanical strength of bio-inspired hierarchical composites and
reveal the unique size-effect on the mechanical strength that ben-
efits from the staggered hierarchical structure. We note that the
statistical shear lag model introduced here assumed an ideally par-
allel alignment of filaments. In the future, effects of filament bend-
ing and torsion will be taken into account so that the model can be
applied to composites that have more complicated microstructures
(e.g., CNT ropes containing hierarchical helical microstructures)
[38].

6. Concluding remarks

In the current study, the statistical shear lag model was extended
to investigate the size effect on the hierarchical composites’
mechanical properties at all levels including the filaments, unit cell,
and the macroscopic composite. The model suggests that the statis-
tics of the filament strength plays an important role in the optimiza-
tion of the geometries of the unit cell. A more general solution
emerged for the critical link length scale beyond which the Weibull
analysis can be applied to predict size scaling of composite strength.
This solution unifies the formulations proposed in previous statisti-
cal models that were determined empirically. Furthermore, the
multiscale statistical model shows that the staggered composites
have suppressed size-dependent mechanical properties. This multi-
scale statistical model reveals the transition of the statistics of
strength during material scaling-up at each level in a composite
with nested hierarchical structures. By factoring discontinuities into
the composites in a controlled manner, staggered composites can
achieve an incredible capability for defect tolerance due to their
hierarchical structures. This finding provides valuable insights for
the design of novel bio-inspired high-performance composite mate-
rials. For example, with reasonable modifications to account for the
difference in geometries of building blocks, this statistical model
can be applied to other nanocomposites, such as laminated gra-
phene oxide-polymer composites, to guide the microstructure
design that preserves the excellent mechanical properties of the
nanoscale building blocks [39–41].
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Appendix A. Figures with essential colour discrimination

Certain figures in this article, particularly Figs. 1–6, are difficult
to interpret in black and white. The full colour images can be found
in the on-line version, at http://dx.doi.org/10.1016/j.actbio.2015.
01.040.
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