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N
atural and biological materials are
found to exhibit an outstanding
balance of stiffness, strength, and

fracture toughness. In contrast, synthetic
engineeringmaterials typically do not achieve
such a balance. For example, as shown in
Figure 1, synthetic materials sacrifice tough-
ness as their stiffness is improved, and vice

versa.1 In the past two decades, significant
efforts have been undertaken to under-
stand the secret of natural materials,2 which
achieve high stiffness and toughness from
relatively weak constituents and chemical
bonds (e.g., hydrogen bonds).3,4

Commonly found in nature, mollusk
shells are an excellent example of high-
performance biological composites.5,6 For
instance, abalone shell is composed of
about 95% aragonite, a brittlemineral. How-
ever, it exhibits a toughness about 3000
times higher than aragonite.6�10 Examining
the hierarchical architecture of red abalone
reveals that stacks of 8 μm long and
0.5 μm thick aragonite tiles are overlapped
and connected by a 20�30 nm thick layer
of organic material (see Figure 2a). The
average overlap length is approximately
1.6 μm.11,12 Studies suggest that this “brick-
and-mortar” structure allows large sliding
deformation of tablets and suppresses the
strain localization and crack propagation in
the brittle aragonite tiles.6,13,14 The overlap
length is found to be critical in the load
transfer mechanism. Gao et al.15 estimated
a critical overlap length using Griffith's frac-
ture criterion. They suggested that the opti-
mal aspect ratio of tablets in a biological
composite is σf/τf, where σf and τf are the
tensile and shear strength of the tablet and
matrix materials, respectively. However, the
elastic properties of each constituent, which
emerge in the model presented here, were

not accounted for in ref 15. Given that nacre
presents a three-dimensional tablet organi-
zation, it is impossible to achieve a uniform
overlap length in all in-plane directions.
Therefore, various deformation mechanisms
have been proposed to explain the extra
toughening observed in this material. Wang
et al.16 and Evans et al.17 claimed that
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ABSTRACT

Numerous theoretical and experimental studies on various species of natural composites, such as

nacre in abalone shells, collagen fibrils in tendon, and spider silk fibers, have been pursued to

provide insight into the synthesis of novel bioinspired high-performance composites. However, a

direct link between the mechanical properties of the constituents and the various geometric

features and hierarchies remains to be fully established. In this paper, we explore a common

denominator leading to the outstanding balance between strength and toughness in natural

composite materials. We present an analytical model to link the mechanical properties of

constituents, their geometric arrangement, and the chemistries used in their lateral interactions.

Key critical overlap length scales between adjacent reinforcement constituents, which directly

control strength and toughness of composite materials, emerge from the analysis. When these

length scales are computed for three natural materials;nacre, collagen molecules, and spider silk

fibers;very good agreement is found as compared with experimental measurements. The

model was then used to interpret load transfer capabilities in synthetic carbon-based materials

through parametrization of in situ SEM shear experiments on overlapping multiwall carbon

nanotubes.

KEYWORDS: natural materials . toughness . nanocomposites . shear load
transfer
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nanoasperities on the tablet surface may interact in
shear and act as a source of interface strengthening.
Song et al.18 proposed that the aragonite bridges at the
interface act as reinforcements during tablet sliding.
Furthermore, Meyers et al.19 claimed that at large sliding
deformation, the broken aragonite bridges re-enter in
contact and relock the tablets. Katti et al.20 claimed that
the interlocking of adjacent mineral platelets acts as the
source of strengthening of nacre. By contrast, Espinosa
et al.11,12 showed that diffusive tablet sliding is a result of
tablet interface hardening from the waviness of the
tablet surfaces. Their understanding emerged from a
multiscale experimentation approach and detailed
micromechanical modeling.
Tendon is another perfect example of a biomaterial

that exhibits remarkable toughness. In this case, unlike
the sheet structure in abalone shell, tendon takes the
form of a hierarchical fiber, the structure of which is
shown in Figure 2b. Tendon fibers consist of aligned
collagen fibrils, which are based on tropocollagen
molecules. An individual tropocollagen molecule,
which is triple-helical protein chain, has a length of
about 300 nm and a diameter of about 1.23 nm.21�24

As indicated in Figure 2b, neighboring molecules
are shifted by a distance D = 67 nm in the axial direc-
tion. The gap, G, between tropocollagen molecules
is approximately 0.6D = 40 nm; thus, the overlap
length, O, equals 0.4D = 27 nm. Therefore, similar to
mollusk shells, tendon can be thought of as a “brick-
and-mortar” structure, although in a smaller length scale

(tropocollagen molecules vs aragonite tiles). These
collagen fibrils assemble into fascicles, which in turn
assemble into the tendon fiber. Tendon has an elastic
modulus on the order of 1 GPa, a tensile strength of
about several hundred MPa, and a fracture strain up to
100%.25�27 Buehler et al.28,29 performed extensive
atomistic calculations on individual tropocollagenmolec-
ules and collagen fibrils and found that the hierarchical
architecture of collagen fibrils optimizes its mechanical
performance.
Spider silk is another natural fibrous material that

has attracted a lot of attention due to its high strength
and great extensibility. The elastic modulus of spider
silk is on the order of 5 GPa, and the strength is about
1.5 GPa.30 Figure 2c shows the hierarchical structure of
spider silk, starting with small crystals interconnected
by an amorphous matrix leading to microfibrils. The
antiparallel β-sheet crystal, the lowest level element in
spider silk, is believed to play a key role in its unique
mechanical properties.31 The β-sheet crystals are
bonded by hydrogen bonds (H-bonds) and typically
have dimensions of a few nanometers. Atomistic cal-
culations by Keten et al.31,32 have shown that the
dimensions of the β-sheet crystals optimize its tough-
ness. In fact, the study suggests that crystal dimensions
of 1�2 nmby 2�4 nm are needed to deform hydrogen
bonds in shear rather than in tension.
Since carbon-based materials, such as carbon nano-

tubes (CNTs) and graphene, have been experimentally
proved to have excellent mechanical properties, such
as high elastic modulus and ultimate strength,33,34

researchers have been exploring the possibilities of
utilizing them to fabricate bioinspired high-performance
nanocomposites.35�40 However, the theoretical studies
on natural materials described above either explain
the optimization of mechanical properties of only a
specific biomaterial or are difficult to apply to gen-
eral cases because the mechanical properties in the
model are hard to characterize. Therefore, developing
a universal theory that can provide guidelines to
general composite design is essential. Here we present
a continuum analysis and introduce a general model
that explains the optimization of hierarchical architec-
tures observed in natural composites. In particular the
model predicts characteristic overlap lengths that
optimize the mechanical performance in a variety of
natural materials (namely, abalone shell, tendon, and
spider silk) with very different geometric structures and
at a range of different length scales. The predicted
overlap lengths are found to be in very good agree-
ment with those found to form by nature, demonstrat-
ing its general applicability to both sheet and fibrous
materials. In the case of the natural fiber materials, the
model is demonstrated to apply across length scales,
predicting overlap lengths on the submicrometer
scale for collagen fibrils and on the nanometer scale
for β-sheet stacking in spider silks. The bioinspired

Figure 1. Comparison of performance of engineered and
biological materials in the stiffness�toughness domain.
Stiffness vs toughness trend for common synthetic materi-
als (plot adapted from Ashby et al.1) follows the dashed red
curve, exhibiting strong reduction in fracture toughness
when stiffness is improved. Stiffness vs toughness trend for
common biological materials (plot adapted from Fratzl
et al.2) shows a “reinforcing” combination of organic tough-
ness and inorganic stiffness. The “goal” region, in the
engineering materials plot, represents materials with high
stiffness and toughness that may be synthesized through
bioinspired design.
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continuum model is then applied on the two bare
carbon nanotube shear test as a basic study of the
loading transfer capability inside pristine carbon nano-
tube fibrils.

CONTINUUM MODEL

The continuum analysis of a biological composite is
performed on the simplified 2D unit cell shown in
Figure 3, by means of the well-known “shear lag
model”.41 Two tablets are connected by the matrix
material with overlap length L. Due to periodicity in the
thickness direction, we define b as half the tabletwidth.
In themodel, h is thematrix thickness. A tensile normal
stress, σ0, is applied at the right end of the top tablet,
and the left end of the bottom tablet is fixed in the axial
direction, but it is free to deform in the lateral direction.
The left end of the top tablet and the right end of
the bottom tablet are traction-free and free to move.
Therefore, the unit cell simulates the load transfer
mechanism through shear in the overlapped region
in common biological composites.

Elastic Regime. Given the elasticmodulus of the tablet
(or fibril), E, the shear modulus of the matrix, G, the
tensile strength of the tablet, σf, and the shear strength
of thematrix, τf, themechanical response of the unit cell
shown in Figure 3 can be solved in the linear elastic
regime. Force equilibrium of the unit cell requires

τ(x) ¼ b
dσ1(x)
dx

¼ �b dσ2(x)
dx

(1)

where τ(x) is the shear stress in the matrix along the
overlapped region and σ1(x) and σ2(x) are the axial
stresses along the top and bottom tablets, respectively.
As h is small, the matrix is in a pure shear;that is, τ(x) =
Gγ(x), where γ(x) � [u1(x) � u2(x)]/h is the shear strain
and u1(x) and u2(x) are the displacements of the top and
bottom tablets, respectively. When the tablets deform
elastically, the gradient of the shear stress equals

dτ
dx

¼ G

h

du1
dx

� du2
dx

� �
¼ G

Eh
(σ1 � σ2) (2)

where du1/dx and du2/dx are the definitions of the axial
strains along the top and bottom tablets, respectively.
Combining eqs 1 and 2 yields the ordinary differential
equations:

d2σ1

dx2
¼ G

Ehb
(σ1 � σ2)

d2σ2

dx2
¼ G

Ehb
(σ2 � σ1)

8>><
>>: (3)

with the boundary conditions given as

σ1(0) ¼ 0, σ1(L) ¼ σ0
σ2(0) ¼ σ0, σ2(L) ¼ 0

�
(4)

The solution to eqs 3 and 4 is

σ1(x) ¼ σ0

sinh
λL

2

� � sinh
λx

2

� �
cosh

λ(L � x)
2

� �

σ2(x) ¼ σ1(L � x) ¼ σ0

sinh
λL

2

� � cosh
λx

2

� �
sinh

λ(L � x)
2

� �

(5)

Figure 2. Hierarchical structures of three typical natural composites: (a) nacre shell, (b) tendon, and (c) spider silk, scaling from
micrometer down to nanometer.
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where λ = ((2G)/(Ehb))1/2. Applying eq 1, the solution of
the shear stress distribution can be expressed as

τ(x) ¼ σ0bλ

2 sinh
λL

2

� � cosh λ x � L

2

� � !
(6)

By integrating eq 5 and applying the boundary condi-
tions, the displacement fields in the top and bottom
tablets are obtained,

u1(x) ¼ σ0

2λE
λxþ [1þ cosh(λx)]coth

λL

2

� �
� sinh(λx)

� �

u2(x) ¼ σ0

2λE
λxþ sinh(λx)þ [1 � cosh(λx)]coth

λL

2

� �� �
(7)

Hence, the effective strain, εeff, and the effective stress,
σeff, of the composite are

εeff � u1(x ¼ L)
L

¼ σ0

2 λEL
λLþ 2coth

λL

2

� �" #

σeff ¼ σ0
b

2bþ h

� � (8)

Thus, the effective elastic modulus of the composites is
given by

Eeff � σeff

εeff
¼ 2EλbL

(2bþ h) λLþ 2 coth
λL

2

� �" # (9)

The elastic solutions presented by eqs 5, 6, and 7
are the same as the well-known “shear-lag model”.41

Figure 4 show a typical distribution of the shear stress
and tensile stress along the overlapped length. The
shear stress maximizes at both ends and decreases
exponentially toward the center. Therefore, for a large
overlap length, the composite becomes stiff according
to eq 9, but the efficiency of the shear transfer drops, as a
major portion of the overlapped region does not carry
much shear load. Since the shear transfer mechanism is
the key to understanding the mechanical properties of
composites, it is important to quantitatively evaluate
shear transfer efficiency. Here the elastic strain energy
density is used to assess the shear transfer efficiency.
From eqs 8 and 6 plus the elastic limit condition
τ(x = 0) = τ(x = L) = τf, the elastic strain energy density

of the unit cell can be expressed as

wel ¼ τf2

G

h

2bþ h
tanh

λL

2

� �
1
2
tanh

λL

2

� �
þ 1
λL

 !2
4

3
5

¼ τf2

G

h

2bþ h
f (λL)

(10)

where

f (λL) ¼ tanh
λL

2

� �
1
2
tanh

λL

2

� �
þ 1
λL

 !
(11)

Equation 10 suggests thatwhen the elastic properties of
the tablet and matrix, i.e., E and G, are known and the
transverse dimensions of the composite, b and h, are
fixed, the elastic strain energy density is a function of L.
Therefore, to maximize the elastic strain energy density,
one has to maximize f(λL). Solving eq 11 numerically
suggests that f(λL) has a maximum at λL ≈ 3.28, i.e.,
when the overlap length equals

L� � 2:318

ffiffiffiffiffiffiffiffi
Ebh

G

r
(12)

We note that Chen et al.42 reported a similar solution
by a dimensional argument, but without a constant of
2.318 as presented in eq 12. This characteristic overlap
length, L*, derived in this study, results from a closed
form solution. Furthermore, it has the physical meaning
at which the unit cell maximizes its elastic strain energy
density (i.e., the shear transfer efficiency).

Plastic Regime for Highly Ductile Matrix. As matrix ma-
terials in biocomposites usually show extraordinary
ductility in shear deformation, it is also necessary to
investigate the model in the plastic regime, where the
matrixmaterial fails at large shear strain. To accomplish
this, an ideal elasto-plastic model is considered: the

Figure 4. Typical distribution of shear stress and tensile
stress in the unit cell within the linear elastic regime.

Figure 3. Schematic of 2D unit cell used in the composite
continuum model simplified from the architecture of the
nacre shell.
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tablets still deform linear elastically and show brittle
failure at a tensile strength of σf, while the matrix is
modeled as an ideal elasto-plastic material, with a yield
shear stress of τf and plastically deforming until shear
failure at a shear strain of γf (see Figure 5). Whenmatrix
(or interface) plasticity and failure are accounted for,
the elastic zone in the unit cell shrinks as shear
deformation increases, and a plastic zone nucleates
and grows until shear failure occurs.

Based on this matrix constitutive behavior, the
shear stress and tensile stress distribution along the
tablet in the unit cell will contain three zones, “elastic”,
“plastic”, and “failed” zones, when the overlap length is
long enough such that shear failure in the matrix
occurs; see Figure 6. As the sliding between tablets
increases, the elastic zone (with a size of L1) shrinks and
the plastic zone (with a size of L2 at both ends) grows.
However, when shear failure is accounted for, a failure
zone will nucleate and then propagate to the center,
trailing the plastic zone. In other words, the plastic
zone has an upper limit even if the overlap length goes
to infinity. Therefore, to derive a critical plastic zone
size, the behavior of the composite in the plastic
regime must be analyzed.

In this regime, the force equilibrium given by eq 1
still holds. In the failure zone where the shear stress
drops to zero, the tensile stress remains constant. In the
plastic zone where the shear stress is τf, the tensile
stress varies linearly according to dσ1/dx = τf/b and
dσ2/dx =� τf/b. Thus, at the boundary of the left plastic
zone and the elastic zone in the top tablet, the tensile
stress level is given by σ0 = τfL2/b. By introducing a new
coordinate, x0 (see Figure 6), equilibrium in the interval
0 e x0 e L2 yields

du1
dx0

� du2
dx0

¼ 2σ0

EL2
x0 � σ0

E
(13)

Integrating eq 13 and applying the boundary condition
that γ = γf at x0 = 0 (onset of failure), the shear strain
distribution in the plastic zone (0 e x0 e L2) is

γ(x0) ¼ σ0

EhL2
x02 � σ0

Eh
x0 þ γf (14)

Applying the second boundary condition that γ =
τf/G at x0 = L2 (onset of plasticity), the plastic zone size

takes the form of

L2 ¼ Eh(Gγf � τf )
G(σ0 � σ0)

(15)

Integrating eq 1 over the plastic and elastic zones, the
total applied tensile stress on the top tablet can be
expressed as

σ0 ¼ 2τf
b

L2 þ 1
λ
tanh

λL1
2

� �" #
(16)

Combining eqs 15 and 16, the plastic zone size can be
written as

L2 ¼ 1
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(Gγf � τf )

τf
þ tanh2

λL1
2

� �s
� tanh

λL1
2

� �( )

(17)

Substituting eq 17 back into eq 16, the tensile stress
applied on the top tablet is

σ0 ¼ 2τf
bλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(Gγf � τf )

τf
þ tanh2

λL1
2

� �s
(18)

Note that eqs 17 and 18 are the plastic solutions
assuming the tablet is strong enough (such that the
tablet will not fail at the applied stress σ0) and the
overlap length is sufficiently long (such that the failure
zone occurs before the elastic zone disappears). In
addition, eq 18 gives the upper limit of the applied
tensile stress by having the overlap length go to
infinity, i.e., L1 f ¥,

σ0
max ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eh(2Gγf � τf )τf

Gb

r
(19)

Figure 6. Typical shear stress and tensile stress distribution
in the unit cell for the matrix are modeled as an ideal
elastic�plastic material (overlap length is assumed long
enough to allow shear failure in the matrix).

Figure 5. Ideal elastic�plastic shear model for the matrix
material used in the plasticity analysis.
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In other words, no matter how long the tablet overlap
is, the effective strength of the composite cannot
exceed

σeff
max ¼ b

2bþ h
σ0

max

¼ 1
2bþ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ebh(2Gγf � τf )τf

G

r
(20)

Furthermore, as the elastic zone disappears (i.e., L1 f
0), eq 17 gives the upper limit of the plastic zone size

L2
max ¼ 1

λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(Gγf � τf )

τf

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ehb(Gγf � τf )

Gτf

s
(21)

Therefore, when the tablet does not fail, a characteristic
overlap length is given by

L��� ¼ 2L2
max ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ehb(Gγf � τf )

Gτf

s
(22)

If the tablet strength is such that it is smaller than that
resulting from the upper limit of the plastic length,
2L2

max, given by eq 21, i.e.,

σf <
2L2maxτf

b
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eh(Gγf � τf )τf

Gb

r
(23)

then another characteristic overlap length is simply
obtained from the equilibrium of the unit cell, and it is
given by

L�� ¼ σf

τf
b (24)

This solution has the physical meaning that when the
overlap length equals L**, the tablet and interface fail
simultaneously. The characteristic overlap length in
eq 24 takes the identical form to that reported by
Gao et al.15 However, we want to emphasize the
solution in eq 24 comes from a rigorous derivation
and is a specific solution in the plastic regime. In other
words, the characteristic overlap length L**, although
containing only plastic properties of the constituents,
is valid when eq 23 holds, in which not only the plastic
properties but also the elastic properties of constitu-
ents are accounted for.

MODEL VALIDATION AND DISCUSSION

The elastic solution discussed in the previous section
provides a critical length that optimizes the total elastic
strain energy density of a composite. It is worth noting
that in the elastic region the length scale where the
total elastic strain energy density is maximized differs
from that at which the composite is optimized in
strength. For a composite with a brittle interface
(linear elastic shear behavior until failure), the elastic
strain energy density of the material is still maximized
at the characteristic length, L*. Giving that the brittle
interface fails at shear strength, τf, by rearranging
eq 6 one can express the effective strength of the

composite as a hyperbolic tangent function of the
overlap length, namely,

σeff ¼ 2τf
(2bþ h)λ

tanh
λL

2

� �
(25)

This suggests that the strength of the material first
monotonically increases with the overlap length and
then saturates at L . L*.

. Therefore, to optimize the composite perfor-
mance in terms of both toughness and strength, the
ductility of the interface material also plays an impor-
tant role, as discussed in the context of the plastic
solution. By tailoring the plastic properties of the inter-
face material, the effective strength of the composite
materials can be optimized in the second characteristic
overlap length, L**, which is usually larger than L*.
Naturally, as the properties of the interfacematerial are
tailored such that L** approaches L*, the toughness
and strength of the composite are simultaneously
optimized. In the following, this hypothesis is verified
by comparing the model's predictions for the overlap
lengths of three typical natural materials and those
experimentally observed to occur in nature.

Nacre from Abalone Shell. First, the model is applied to
nacre to predict the optimized overlap length of
adjacent aragonite tablets. Nacre from red abalone is
one of the most studied materials found in nature.
Microscopy observations19 have shown that abalone
nacre consists of 0.5 μm thick single-crystal aragonite
tablets overlaid on each other and connected by a
25 nm thick organic matrix. Previous statistical micro-
scopic characterization of the overlapped length of
abalone shell found an average overlap length of
1.6 μm.11,12 The in-plane and out-of-plane elastic mod-
uli of the single-crystal aragonite tablet have been
experimentally determined to be E = 106 GPa and
E^ = 82 GPa, respectively.43 The shear modulus of the
organic interlayer is approximately 1.4 GPa with an
average shear strength of approximately 37 MPa.8 In
addition, the organic matrix exhibits high shear ducti-
lity; the shear failure strain is about 100%.43 The tablet
strength of abalone shell has a wide distribution, due
to the randomly distributed defects in the minerals.44

The tensile strength of individual aragonite tablet has
yet to be experimentally characterized. Since the ara-
gonite mineral is brittle, we use the quasi-static com-
pressive failure stress of nacre shells to approximate
the intrinsic tablet strength. Menig et al.45 performed
quasi-static compressive experiments on abalone
shells and reported compressive strengths ranging
from 100 to 500 MPa. Here we take the strength of
an aragonite tablet, σf =235 MPa, at which 50% of the
specimens failed.45 Applying the mechanical proper-
ties of the aragonite tablets and the organic matrix to
our continuummodel yields two characteristic overlap
lengths of L* ≈ 1.59 μm and L** ≈ 1.69 μm, which are
very consistent with the microscopy characterization
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of 1.6 μm. To demonstrate how the overlap length
affects the composite's performance, finite element
modeling has been performed to obtain the stress�
strain responses at varying overlap lengths. Figure 7a
shows the finite element simulation results of four
typical effective stress�strain responses of abalone
shell for overlap lengths increasing from L*/2 to 2L*.
It is clear that when the overlap length increases, the
stiffness and strength of the composite improves while
some ductility is sacrificed. When the overlap length
approaches L**, the composite enters an unstable
region and the material becomes more brittle.
Figure 7b summarizes the effects of overlap length
on the total elastic strain energy density and the
energy to failure (fracture toughness). As predicted
by the continuum analysis, the total elastic strain
energy density is optimized at L = L*, which corre-
sponds to the highest resistance to damage initiation.
Second, the fracture toughness increases monotoni-
cally when the overlap length increases and has a
sudden drop at around L = L**. This indicates that the
composite becomes very unstable when L g L** and
exhibits a transition from ductile to brittle behavior.

Collagen in Tendon/Bone. Next the model is applied to
predict the overlap of collagen fibrils in tendon. Experi-
ments and atomistic calculations on tropocollagen
molecules28,46�53 reported elastic moduli ranging
from 0.35 to 18 GPa. This broad distribution is probably
due to the different strain rates used in the studies, as
the stiffness of the tropocollagen molecule is found to
be highly sensitive to strain rate and strain level.53 At a
slow stretching rate of 0.5 m/s and small strain level,
the elastic modulus of the tropocollagen molecule is
approximately 4 GPa.53 The shear modulus of the
cross-links in the overlap region in collagen fibrils in a
wet environment is approximately 3.4 MPa, as mea-
sured by micromechanical bending experiments.54

The diameter of a tropocollagen molecule, 2b, is about

1.23 nm, and the gap between tropocollagen molec-
ules, h, is about 0.24 nm.21 Substituting themechanical
properties of the tropocollagen molecule and the
transverse dimensions given above, the characteristic
overlap length, L*, is ∼31 nm, which also compares
verywell with the overlap length of 27 nm identified by
electron microscopy 3-D reconstruction.21

Spider Silk. Finally, the model is applied to predict
the overlap length between β-sheets in spider silk,
which are an example of much smaller scale constitu-
ents than the previous two examples. β-Sheets are
the building blocks for spider silk fibrils with sub-
nanometer dimensions. At such length scales, experi-
ments to characterize elastic properties are extremely
difficult to perform. Hence, molecular dynamic simula-
tions have been used to study the stiffness, strength,
and mechanical toughness of β-sheet crystals.31,32

Bending deformation on a β-sheet cantilever in a large-
scale molecular dynamic simulation31 reported an
elastic modulus of E = 22.6 GPa and a shear modulus
(representative of the cross-links between β-sheets) of
G = 4.6 GPa. The shear strength of H-bonds, which
defines τf in themodel, reaches 200MPa.32 The thickness
of a β-sheet, 2b, is about 1 nm, and the distance between
β-sheets equals the H-bond length, i.e., h ≈ 0.3 nm.
Substituting the elastic properties and transversal di-
mensions of the β-sheet crystal reported above, the
characteristic overlap length of the β-sheet, L*, is about
2 nm. Substituting τf = 200 MPa and assuming σf ≈
E/10 = 2.26 GPa, themodel predicts L**≈ 5.7 nm. As the
periodic distance of H-bonds is about 0.75 nm, an over-
lap lengthbetween L* and L** implies that the optimized
numberofH-bonds inβ-sheet crystals is 3�8. This agrees
very well with the experimental data of β-sheet length,
which ranges from 2 to 8 nm.55 Likewise, a large-scale
molecular dynamic simulation suggests that the shear
strength between β-sheets is optimized at a critical
cluster size of 3�4 H-bonds.32

Figure 7. Finite element simulation results showing overlap length effects on the mechanical response of nacre. (a) Effective
stress�strain responses for different overlap lengths. (b) Elastic and fracture toughness varying with overlap length
normalized by L*. Total elastic strain energy density (squares) maximizes at L = L*, and fracture toughness (circles) exhibits
a sudden drop when L > L**.
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Through application of the model to predict the
optimized overlap lengths for three typical natural
materials, at length scales that range from micrometer
to nanometer, we have found very good agreement
with the experimentally observed geometries. The
results are summarized in Figure 8. This suggests that
the numerical model provides not just a simply solu-
tion for a specific material but a general criterion for
composite material design.

Model Application to Carbon-Based Composites Design. In
this section, the application of the model to the design
of novel carbon-based composite materials is dis-
cussed. As will be demonstrated here, the model
predictions can serve as the basis for the development
of lightweight materials with enhanced mechanical
properties such as high specific strength and tough-
ness. Figure 9a shows the biomimic hierarchical struc-
ture of a CNT yarn, in which aligned CNTs interact with
each other via van der Waals (vdW) interactions or
through cross-linking polymers.38,56,57 As a first study,
the model is applied on a pristine yarn where shear
through vdW interactions between CNTs is assumed as
the only load transfer mechanism (i.e., no cross-linking
polymer between CNTs). The representative unit
containing two bare multiwall carbon nanotubes
(MWCNTs) is shown in Figure 9b. In addition, since
the reinforcement (MWCNT) has a circular cross-section,
the continuummodel introduced above is nextmodified
accordingly.

Assuming the cross-section of the MWCNTs re-
mains circular during deformation and only the outer
shell of each MWCNT carries the tensile load,58 the
force equilibrium condition, eq 1, can be rewritten as

weffτ(x) ¼ dσ1(x)
dx

πjδ ¼ �dσ2(x)
dx

πjδ (26)

in which φ is the MWCNT outer diameter, δ is the shell
spacing (0.34 nm), and weff is the effective contact
width of two MWCNTs. In this case, the first characteristic

overlap length is given by

L� ¼ 2:318

ffiffiffiffiffi
Eh
~G

r
πjδ
weff

� �
(27)

where ~G is the effective shear modulus of the interface
with the circular cross-section accounted for. Similarly,
eq 25 can be recasted as

F ¼ 2τf weff

λ
tanh

λL

2

� �
and λ ¼

ffiffiffiffiffiffi
2~G
Eh

s
weff

πjδ

� �
(28)

,where F is themaximum shear force beyondwhich the
MWCNT junction in the unit cell starts to slide and fail.
As suggested by the hyperbolic function in eq 28, the
shear force increases linearly when overlap length is
small and saturates at a very large overlap length.

To assess themodel capabilities, in situ shear experi-
ments were performed on unfunctionalized MWCNTs
inside a scanning electron microscope (SEM) as shown
in Figure 9b. In this way, the maximum shear force to
break the junctions between the two MWCNTs was
characterized as a function of overlap length (see
Figure 10a). Model predictions using the parameters
described in the following paragraphs, with lower and
upper bonds of shear strength of 30 and 60 MPa,
describe the experimental data quite well. Initially the
junction failure force increases linearly with overlap
length and then starts to saturate at approximately
400 nm. This indicates the experimental results might
contain the material's intrinsic mechanical properties,
such as shear strength; see eq 28. Interestingly, the
experimental data fell into the region in between the
two curves with shear strengths of 30 and 60 MPa
for armchair and zigzag tubes, respectively (Figure 10a).
This suggests that the shear between two MWCNTs is

Figure 9. (a) Hierarchical structure of CNT yarns. SEM image
of a CNT yarn with a diameter of about 30 μm and sche-
matics showing the interaction between functionalized
CNTs through shear (green, red, and gray atoms represent
carbon, oxygen, and hydrogen atoms, respectively). (b)
Procedure of in situ shear experiment on pristine CNTs in
SEM.

Figure 8. Comparison of overlap lengths for basic building
blocks of three natural materials (nacre, tendon, and spider
silk) from experimental observation (solid squares) and
model prediction (open squares).
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dependent on chirality, which is verified by the atomistic
calculations discussed below.

Transmission electron microscope (TEM) studies
have shown that the MWCNTs used in this study have
an average outer diameter, φ, of ∼23 nm and inner
diameter of about 10 nm. The minimum spacing
between two MWCNTs at equilibrium is approximately
identical to the shell spacing; δ = 0.34 nm. As shown in
Figure 10d, the effective contact width, weff, is defined
as the width within which the gap between two
MWCNTs is less than or equal to 2δ. Thus, weff =
(φ2 � (φ � δ)2)1/2. To estimate the shear modulus of
the interface, molecular mechanics (MM) calculations
were performed between two graphene sheets. The
open source code LAMMPS (large scale atomistic/
molecular massively parallel simulator,57,59) was used
with the AIREBO potential60 to account for both cova-
lent bonds and vdW interactions between carbon
atoms. As shown in Figure 10b, two graphene sheets,
with a size of approximately 5 � 5 nm2, were first
relaxed at 0 K to the equilibrium state. Then the bottom
graphene sheet was fixed while the shear displace-
ment was prescribed on the top sheet. The simulation
box size was approximately 5 � 5 � 20 nm3, and
periodic boundary conditions were used. To account
for anisotropy, the top sheet was displaced along the
zigzag and armchair directions, respectively. The shear
strain was computed as the ratio between the slid-
ing distance and the equilibrium spacing of 0.34 nm.

The shear stress was computed as the total force acting
on the top sheet divided by the area. The MM simula-
tions suggest that the out-of-plane shear modulus of
bilayer graphene sheets ranges from 0.2 to 0.5 GPa
depending on the shear directions. Furthermore, the
MM simulations suggest that the shear strength be-
tween two graphene sheets is dependent on the shear
directions. Shearing in the armchair direction yields a
shear strength of 58 MPa, and shearing in the zigzag
direction yields a shear strength of 28 MPa. Additional
MM simulations were done to investigate the shear
modulus dependence on the spacing between two
graphene sheets. Results show that the shear modulus
decreases as a power law function of spacing (see
Figure 10c), namely,

G ¼ G0
d

δ

� ��16:14

(29)

in which G is the out-of-plane shear modulus at an
intershell spacing of d, and G0 is the out-of-plane shear
modulus at equilibrium spacing δ = 0.34 nm. Equation
29 provides a way to estimate the effective shear
modulus, ~G, over the effective contact width for the
two MWCNTs. Integrating eq 29 yields an effective
shear modulus ~G≈ 0.1 GPa. Given the tensile modulus
of CNT, E = 1 TPa, and h = δ = 0.34 nm, the shear
strength, τf, is the only free parameter in eq 28. Apply-
ing the numerical model, it is found that the experi-
mental data fall in between the two curveswhere shear

Figure 10. (a) Experimental results for in situ SEM shear tests for unfunctinalized MWCNTs. In addition, model predictions
yield the lower and upper bonds of shear strength, 30 and 60 MPa, respectively. (b) Schematic of the bilayer graphene
used in the MD calculations. (c) MD results show that the out-of-plane shear modulus of graphene sheets follows an inverse
power law relationship with the sheet spacing. (d) Cross-section view of two adjacent MWCNTs and criterion to define the
effective contact width.
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strengths of 30 and 60MPawere used. These two limits
of the shear strength agree with those obtained from
MM simulations very well and imply that the MWCNTs
used in this study contain random chiral angles. The
shear strength measured here is in the range of pre-
viously reported values.61�64 It is worth noting that in
previous reports the shear stress was simply defined as
the total shear force divided by thewhole overlap area.
This could be the reason that previously reported shear
strength of unfunctionalized CNTs shows a significant
scatter. Our analysis differs from previous ones by con-
sidering the distribution of the shear stress over the
overlap region. In this way, the value reported in this
study could be treated as a material's intrinsic property.

Inputting the material properties in eq 27 yields the
first characteristic overlap length, L*, of approximately
300 nm. As the vdW interaction between pristine CNTs
is very weak, eq 28 suggests that for perfectly over-
lapped CNTs the maximum shear force will reach a
plateau when the overlap length increases. In other
words, the junctions between CNTs tend to fail by
sliding before MWCNT fracture, indicating the second
characteristic overlap length, L**, is infinitely large. One
approach to improve the interactions between tubes is
changing the morphology of the overlapped CNTs,
such as introducing wrapping between CNTs by
twisting.39 However, large twisting angles could lead
to performance degradation. Therefore, functionaliz-
ing the CNTs with polymers possessing the right
chemical bonds and chain flexibility (molecular
weight) can lead to improved shear interactions. The
model provides insight into characteristics desirable in
these novel polymers. Their shear strength and ducti-
lity should be such that L** can be brought close to L*.
Such optimized interface behavior can be achieved by
choosing the right functional groups. For example, one
can envision carboxylic groups (short chains: H-bond
acceptors and donors), propanoic/butanoic acid groups
(longer chains: H-bond acceptors and donors), and
para-aramide groups (Kevlar: combination of π-stack-
ing and H-bonds) as promising functional groups. In
this regard, the in situ SEM shear experiment can serve
as an efficient tool to quantitatively investigate inter-
face properties leading to optimal performance for a

given constituent elasticity and strength. Together
with atomistic calculations, the shear experiment can
provide the necessary information for the model here
presented to guide the geometric design of high-
performance carbon-based (e.g., CNT and graphene)
composites.

CONCLUSION

In this study, a continuum model has been derived
by rigorously solving the shear-lag model analytically
in both elastic and plastic regimes. Themodel connects
the effective mechanical properties of composite
materials to the mechanical behavior of discontin-
uous reinforcements, their geometry, and chemistry
of cross-links governing lateral interactions. The
model reveals that optimal mechanical performance
(simultaneous high toughness and strength) is a strong
function of overlap length in the discontinuous rein-
forcement-matrix architecture. More importantly, it
provides amathematical framework for understanding
synergistic effects. In this context, characteristic over-
lap lengths are identified and shown to be dependent
on the properties of the reinforcement material and
chemistry of the cross-linking molecules (bond type
and density). In addition, it is shown that the ductility of
the matrix in shear deformation, as controlled by such
molecules, plays an important role in the composite's
overall ductility. The model is presented in a 2-D
framework and, as such, is complementary to prior
investigations of 3-D effects in natural materials, e.g.,
nacre,6,11,12,14,16,18�20,43 in which the 3-D architecture
implies a more complex behavior leading to simulta-
neous high stiffness and toughness.
Validated by successfully predicting the character-

istic overlap lengths in three well-known natural com-
posites, with differing geometries that scale from micro-
meter down to nanometer levels, the model serves as a
guideline in designing novel compositematerials. Further-
more, in situ shear experiments on pristine MWCNTs
confirm the numerical model capability to describe load
transfer between constituents. In the future, the shear
experiment and numerical model introduced in this
study can serve as valuable tools for designing high-
performance carbon-based nanocomposites.

METHODS
MWCNTs grown with an arc discharge method (provided by

n-Tec) were used in in situ SEM shear experiments. X-ray
photoelectron spectroscopy studies (not presented here) con-
firm no appreciable noncarbonaceous impurities, justifying the
assumption of pure vdW interactions between MWNTs. As
shown in Figure 9b, one of the two MWCNTs is mounted on a
calibrated atomic force microscope (AFM) cantilever whose
spring constant is known. The other MWCNT is attached on a
three-axis actuator, through which the two MWCNTs can
be brought together to form a junction in situ in the SEM.

The junction length was varied in the range 50 to 400 nm. To
shear the junction, the actuator was moved away from the
AFM cantilever until the junction failed. The maximum shear
load at failure was obtained by recording the AFM cantilever
deflection.
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