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ABSTRACT: Nanomechanical resonators make exquisite force
sensors due to their small footprint, low dissipation, and high
frequencies. Because the lowest resolvable force is limited by
ambient thermal noise, resonators are either operated at cryogenic
temperatures or coupled to a high-finesse optical or microwave
cavity to reach sub aN Hz−1/2 sensitivity. Here, we show that
operating a monolayer WS2 nanoresonator in the strongly nonlinear
regime can lead to comparable force sensitivities at room
temperature. Cavity interferometry was used to transduce the
nonlinear response of the nanoresonator, which was characterized
by multiple pairs of 1:1 internal resonance. Some of the modes
exhibited exotic line shapes due to the appearance of Hopf
bifurcations, where the bifurcation frequency varied linearly with the driving force and forms the basis of the advanced
sensing modality. The modality is less sensitive to the measurement bandwidth, limited only by the intrinsic frequency
fluctuations, and therefore, advantageous in the detection of weak incoherent forces.

KEYWORDS: Two-dimensional materials, transition-metal dichalcogenides, nanomechanical resonator, nonlinearity,
internal resonance

The force sensitivity of a nanomechanical resonator is
limited by the thermal force noise (SF

Th), which according
to the fluctuation−dissipation theorem is given by SF

Th =
4kbTmeγB; where kb is the Boltzmann constant, B is the
measurement bandwidth, T, me, and γ are the temperature,
effective mass, and line width of the resonance. Because of
their low mass and narrow line width, by employing low-
dimensional materials, such as nanowires, nanotubes, and two-
dimensional (2D) materials, at cryogenic temperatures is an
attractive strategy toward the design of resonators with high
force sensitivity.1−7 However, realizing the thermal force limit
in these systems is challenging, as it requires a transduction
scheme that can efficiently convert small displacements into a
measurable signal.8 Consequently, their performance is often
limited by noise in the transduction scheme.5,9

An alternative but unexplored approach is to operate the
resonator in the nonlinear regime and utilize the sensitivity of
bifurcation points that manifest in the frequency−response
curve to an external force. The bifurcation points arise on
account of nonlinear mode-coupling or internal resonance
(IR) in the system. If the linearized natural frequencies are
denoted by ωi (i = 1, 2, ..., ∞), IR occurs when some of the

frequencies are commensurate or nearly commensurate, that is,
there exist integers ki (not all of them zero), satisfying k1ω1 +
k2ω2+ ... + kpωp ≈ 0.10−12 Such an approach to force sensing is
advantageous due to multiple reasons. First, the method relaxes
the requirement of a narrow measurement bandwidth, as
nonlinear responses offer a higher signal-to-noise ratio and are
relatively simpler to measure. Second, theoretical estimates
suggest that a force sensitivity in the attoNewton range can be
achieved at room temperature.13 Lastly, the shorter integration
times may enable the detection of weak, incoherent forces and
force jumps.
Nanomechanical resonators that utilize low-dimensional

materials can be driven into the nonlinear regime even at
modest actuation forces due to their small thickness (bending
stiffness) and, therefore, have been the subject of recent
research.14−20 Among different 2D materials, transition-metal
dichalcogenides (TMDCs) with the general chemical formula
AB2 (A = Mo, W and B = S, Se, or Te) are characterized by
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reduced phonon−phonon scattering21−23 and negligible
spectral broadening24 and, thus, are better suited to resonator
studies than graphene and other commonly employed
materials. In this letter, we report a force sensor that utilizes
nonlinear mode coupling in a monolayer tungsten disulfide
(WS2) nanoresonator. The driven resonances at a high driving
force resulted in multiple pairs of IR. Additionally, some of the
modes exhibit exotic line shapes that significantly differ from
the standard Lorentzian line shape under low actuation drives
as well as the Duffing response under high actuation drives. We
posit that the observed line shapes are a consequence of
nonlinear coupling between the modes, where the source of
nonlinearity is geometric in nature. We utilize a reduced order
(RO) model that consists of two Duffing oscillators with
commensurate frequencies (i.e., 1:1 IR) and cubic, nonlinear
coupling terms to qualitatively replicate the measured line
shapes. Bifurcation analysis revealed the exotic line shape to
originate from Hopf bifurcation points in the frequency−
response curve. Although it stems from nonlinear mode
coupling, the bifurcation point has a linear dependence on the
force magnitude and provides a simple methodology for the

detection of weak forces.13 We estimate the force sensitivity as
350 fN in the current implementation and to improve
significantly (∼500 aN) with the addition of a parametric
drive. In summary, the results presented here provide a path
forward toward the utilization of nonlinearity for force and
mass sensing as well as the synchronization of internally
resonant modes in TMDC nanoresonators.
The monolayer WS2 nanoresonator (Figure 1a) was

fabricated using a combination of mechanical exfoliation
onto an SiO2 wafer, potassium hydroxide (KOH)-assisted
polymethyl methacrylate (PMMA) transfer of optically
identified monolayer flakes onto a pristine Si/SiO2 wafer,
and e-beam lithography/lift-off techniques (see Supporting
Information S1 for more details). The resonator was
sandwiched between Au electrodes at the top and exposed
negative e-beam resist (hydrogen silsesquioxane, HSQ) at the
bottom. The cavity depth was determined by the thickness of
the spin-coated HSQ, and a value of ∼375 nm was chosen as it
predicted good responsivity values for monolayer WS2 based
on a thin-film interference model (see Supporting Information
S2). Raman spectroscopy was employed to identify the

Figure 1. Sample fabrication, Raman spectroscopic characterization, cavity-interferometry setup, and measurement of thermo-mechanical
resonance spectra. (a) A pseudocolored SEM image of the monolayer WS2 nanoresonator that is clamped on two edges using gold electrodes (scale
bar: 10 μm). (b) Raman spectroscopy data (blue, solid line) are fit to a multipeak, Lorentzian line shape (black, dashed line) to identify the peak
locations of different phonon modes. (c) A schematic of the experimental setup. A He−Ne laser is used as the probe beam, and a piezo disk is used
to actuate the nanoresonator. The sample is housed in high-vacuum conditions (<10−5 Torr). Different abbreviations: BS, beam splitter; PD,
photodiode; ND, neutral density; and LWD, long working distance. (d) The thermo-mechanical resonance spectra of modes 1 and 2 at different
probe powers. (e) The Q-factor is lowered with increasing probe power (left axis). The peak-signal intensity is plotted for different probe powers
and fit to a straight line (right axis). Data shown are for mode 2.
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thickness of few-layered TMDC samples.25 Specifically, the
Raman spectrum of WS2 was characterized by the in-plane E

1
2g

and out of plane A1
g phonon modes. It is known that the A1

g
mode undergoes softening as the thickness of WS2 is reduced,
and hence, the spacing between the two phonon modes is
indicative of the number of layers. Raman spectroscopy
measurement (Figure 1b, also see Supporting Information
S3) revealed a spacing of ∼66 cm−1 between the two phonon
modes, confirming that the nanoresonator is one-layer thick.26

Figure 1c presents a schematic of the experimental setup,25

where a He−Ne laser (632.8 nm, average power <450 μW) is
used as a probe beam and is focused on the nanoresonator, to a
spot size of <2 μm, using a long working distance objective
(NA = 0.55). The chip-carrier containing the sample is
mounted on a lead zirconate titanate (PZT) disc (d33 ∼ 330
pmV−1) that actuates the different resonance modes of the
nanoresonator, and the chip-carrier/PZT disc assembly is
housed inside a custom-built vacuum chamber (vacuum level
<10−5 Torr) with electrical feedthroughs and optical viewports.
The underlain Si substrate and the nanoresonator form an
optical cavity whose reflectance, modulated by the latter’s
motion, is measured on a fast photodiode. An RF signal
generator provides the driving signal to the PZT disc, whereas
a lock-in amplifier measures the photodiode voltage. A
spectrum analyzer was used in the thermo-mechanical
resonance measurements.
Figure 1d shows the undriven resonance spectrum acquired

at room temperature, with a resolution bandwidth of 100 Hz,
using different laser powers. The measured data were fit to a
Lorentzian line shape composed of two resonance peaks as it
improved the fitting. Also, modal analysis (see Supporting
Information S4) revealed that the first and second modes have
closely spaced frequencies and are characterized by mode
shapes whose maximum out of plane displacement occurs near
the center of either free-edge. For the case where the probe
power was ∼180 μW, curve fitting yielded frequency centroids
1.0429 and 1.0443 MHz and Q-factors of 617 (±500) and
2472 (±750) for the two modes. The lower Q-factor of mode
1 is due to poor signal-to-noise ratio (SNR) at this probe
power. Increasing the probe power to 450 μW resulted in a
reduction of the second mode Q-factor to ∼1200 (±110),
along with a blue-shift of the frequency centroids (1.0462 and
1.0477 MHz). The lowering of Q-factor with increasing probe
power reported here (Figure 1e) is consistent with previous
measurements on WSe2 monolayer resonators, where it was
shown that the Q-factor decreases due to heating from the
probe laser and photothermal back-action from the optical
cavity.22 Photothermal back-action is an optomechanical effect
that results in a time-delayed force on the resonator and
effectively modifies its damping.27 Depending on the sign of
the photothermal force gradient (∇F), the motion of the
resonator is either amplified (∇F < 0) or quenched (∇F >
0).27 In our measurements, the peak signal intensity varies
linearly with the probe power (Figure 1e); consequently, we
rule out any photothermal back-action effects and attribute the
decrease in Q-factor to sample heating. We also note that the
Q-factor reported here (at room temperature) is approximately
1 order of magnitude higher than previous reports on
monolayer TMDC resonators with similar sample dimen-
sions.22,28,29 In order to fully understand the source of this
improvement, further measurement of Q-factors at different
temperatures is needed to account for both intrinsic and
extrinsic damping sources, which is outside the scope of the

current letter. However, we conjecture that the higher Q-factor
may partly be due to the robust clamping scheme and the
absence of electrostatic damping that is otherwise prevalent in
measurements that employ capacitive actuation.23

Using modal analysis with finite elements (see Supporting
Information S4), we first estimated the resonance frequencies
of the sample without including any prestress. The Young’s
modulus of the material (EY ∼ 270 GPa) was assumed to be
isotropic, which is a valid assumption for strains <10% as
shown previously.30 We employed a thin-shell thickness of 0.34
nm that facilitates the use of continuum theory for describing
the behavior of 2D WS2 resonators, while ensuring that the
bending rigidity value is consistent with first-principle
calculations31,32 (see Table S1 in Supporting Information for
a complete list of parameters used in the modal analysis). The
resonance frequency of the fundamental mode without
prestress was estimated to be ∼0.47 MHz, which is smaller
than the observed value of 1.0462 MHz. For a plate under
prestress, the frequency of the fundamental mode can be

expressed as = +f f f0 p
2

m
2 , where f p is the resonance

frequency of a plate without prestress and fm is the resonance
frequency of a membrane with uniform prestress and negligible
bending stiffness. Depending on their relative values, the
resonator could be in (1) plate regime where fm → 0, (2)
membrane regime where f p → 0, or (3) in the mixed regime,
where both bending rigidity and prestress need to be
accounted for. The WS2 nanoresonator reported here is in
the mixed regime, as is evident from f p < f, necessitating the
inclusion of prestress. We repeated the modal analysis by
incorporating a uniform prestress (σ0) in the plate along the
direction perpendicular to the clamped edges. The predicted
and measured values for the resonance frequency of mode 1
coincided for σ0 ∼ 45 μNm−1. For perspective, this value is 3
orders of magnitude smaller than previous reports on MoS2
drum-head resonators33,34 and comparable to H-shaped
graphene resonators.8 The smaller value of prestress may
partially be attributed to the wet processes in our fabrication
workflow as opposed to a purely dry-transfer protocol.8,25

From the modal analysis for σ0 ∼ 45 μNm−1, the predicted
frequencies for modes 2 and higher do not line up with the
observed values (see Figure S6 in Supporting Information).
We briefly comment on the possible reason for this
discrepancy. Previous reports on few-layered graphene
resonators have shown the possibility of unconventional
“edge modes” that arise due to an out of plane deformation
profile and/or imperfections in the sample.35−37 Further,
because the estimated critical buckling load (Nxx) is
comparable to the prestress (Nxx ∼ σ0/2.5 = 16.74 μNm−1,
see Supporting Information S4), the nanoresonator is
susceptible to rippling under a nonhomogeneous stress profile.
A priori knowledge of both the sample topography and the
mode shapes is needed to fully analyze the origin of this
discrepancy. The laser spot size in our experimental setup is
comparable to the sample dimension, and consequently, we
cannot measure the mode-shapes with high spatial resolution.
We measured the driven resonance spectrum of the

nanoresonator by sweeping the actuation frequency applied
to the PZT disc and recording the voltage on the photodiode
with a lock-in amplifier. Unless otherwise specified, the probe
power was kept constant at 450 μW in these measurements.
The first four resonance modes are shown in Figure 2a,b at low
actuation drives of 0.75 and 1.5 Vp−p. The higher order modes
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(>mode 4) had poor SNR at these low actuation drives but
were detectable at 2 Vp−p and larger driving voltages. Spurious
resonances that arise from the motion of the PZT disc were
eliminated by measuring the out of plane motion of the
adjacent gold electrodes (see Supporting Information S5).
Resonances that overlapped in both measurements were
categorized as spurious and are not shown. With increasing
driving force, mode 1 exhibited the amplitude-frequency effect,
that is, the resonance frequency was strongly dependent on the
vibration amplitude (Figure 2c). However, the resonance
frequency of mode 2 remained stable after initial stiffening
(Figure 2d). Further, the resonance line width increased
monotonically with the driving force for both modes, which is
indicative of nonlinear damping. Nonlinear damping has
previously been reported in low-dimensional NEMS such as
carbon nanotubes as well as graphene resonators, although its
physical origin is currently unclear.38 The weakly nonlinear
behavior of mode 1 in Figure 2c can be understood within the
framework of a Duffing resonator, viz.,

γ η ω α β δ ω+ + + + + + =d x
dt

x
dx
dt

x x x x
F

m
t( ) cos( )

2

2
2

0
2 3 4 5

e

(1)

where me is the effective mass, γ is the linear damping
coefficient, ω0 is the resonance frequency, α, β, δ are the
cubic-, quartic-, and quintic-order nonlinear coefficients, and η
is the nonlinear damping parameter. In Figure 2c, mode 1
undergoes hardening at intermediate drive voltages followed
by softening at higher drives. The quartic- and quintic-order
nonlinear terms are included to account for this mixed type of
nonlinear behavior.15,18 The measured data were fit to the
Duffing model (given in eq 1) for mode 1 and to a Lorentzian
line shape for mode 2 to extract the effective line width at
different actuation voltages (see Supporting Information S6).
We investigated mode coupling due to geometric non-

linearity in modes 1 and 2 by driving them at even higher

harmonic forces. When the driving voltage was increased to 3
Vp−p, we observed a sudden drop in the peak amplitude of
mode 1 along with the appearance of a sideband for mode 2
(Figure 3a). This redistribution of energy between the two

modes at a high actuation amplitude suggests that they are
coupled. Further, the emergence of a bimodal line shape for
mode 2, which is also referred to as mode splitting39 or an M-
shaped resonance curve40 in the literature, with increasing
actuation amplitude is a telltale signature of 1:1 IR between the
two nearly commensurate modes.12 At even higher driving
voltages, mode 1 becomes bimodal and develops a sideband at
a lower frequency (Figure 3b, indicated with an arrow). The
behavior of mode pairs 3 and 4 (Figure 3c) and 5 and 6
(Figure 3d) was qualitatively similar under high driving forces.
For instance, we observed a sudden dip in the peak amplitude
of modes 3 and 4 along with an increase in their bandwidth
(see Figure 3c) as the driving voltage was increased to 3 Vp−p.
Mode 6 was bimodal even under low driving forces; as the
voltage was increased to 3 Vp−p, a drop in the peak amplitude
of the higher frequency branch was accompanied by the
appearance of a sideband in the lower frequency branch.
The resonant behavior of modes 7 and 8 as a function of the

actuation amplitude is presented in Figure 4. Modes 7 and 8
exhibited a bimodal line shape even at a low driving voltage of
2 Vp−p (Figure 4a). Unlike modes 2 and 6 where the two peaks
in the bimodal response were well resolved, the line shape for
mode 7 is reminiscent of 1:1 IR in taut strings. In the latter, the
overshoot is a consequence of amplitude-modulated motion
due to Hopf bifurcation.41 The phase response for mode 7 is

Figure 2. Weakly nonlinear behavior in modes 1 and 2. The driven
resonance spectra at low driving voltages is shown for modes (a) 1
and 2 and (b) 3 and 4. (c) Mode 1 displays a mixed-type Duffing
response and nonlinear damping with increasing actuation voltages.
(d) The effective damping in mode 2 increases with the driving force.
In (c and d) the driving voltages used from bottom to top are 0.5,
0.75, 1.5, and 2.0 Vp−p. Figure 3. Nonlinear behavior at high drive forces is mediated by 1:1

IR. (a, b) The evolution of nonlinearity in modes 1 and 2 is presented
for increasing driving voltages. At 3 Vp−p, there is a redistribution of
energy between modes 1 and 2. The bimodal response of mode 2
suggests 1:1 IR. At a higher driving voltage of 7 Vp−p, mode 1
develops a sideband at a lower frequency. Inset in (a) plots the peak
intensity (μV) vs the driving voltage (V) for mode 1. The linear
behavior at low voltages is transformed into amplitude saturation at
intermediate voltages (red, dashed ellipse), followed by a drop in the
intensity at a driving voltage of 3 V (arrow). Mode pairs (c) 3 and 4
and (d) 5 and 6 showed similar behavior with increasing excitation
force. Sidebands that appear with increasing drive forces are shown
with arrows.
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shown in Figure 4b. A total phase shift of π in the frequency
span between 1.33 and 1.35 MHz ascertains that the line shape
is not due to a superposition of two close-by modes but
originates from a single mode. Upon progressively increasing
the driving voltage to 6 Vp−p, the line shapes for mode 7
remained similar but with better SNR (Figure 4c); whereas for
mode 8, the lower frequency portion exhibited softening.
Forward and backward swept traces were also obtained (Figure
4d) for modes 7 and 8 at 6 Vp−p. In addition to the expected
hysteresis (for instance, in the softening portion of mode 8),
we noticed that the peak amplitude of mode 7 was smaller
during the backward sweep.
The frequency−response curves presented in Figures 3 and

4 are a consequence of 1:1 IR and can be understood using a
generalized RO model that consists of two Duffing oscillators
with nearly commensurate frequencies and weakly nonlinear
coupling terms, given by the following pair of ordinary
differential equations (ODEs):

ω μ ω̈ + = ϵ[− ̇ + + + + + + ]x x x k x a x y b xy c y d y F tcos( )1
2

1 1
3

1
2

1
2

1
3

1

(2)

ω μ̈ + = ϵ[− ̇ + + + + + ]y y y k y a x y b xy c x d x2
2

2 2
3

2
2

2
2

2
3

2

(3)

where x and y refer to the modal degrees of freedom and ϵ is a
small parameter. The forcing term (F) is present in only one of
the oscillators, as it corresponds directly to the experimental
situation; however, because of the nature of 1:1 IR, the other
mode is automatically excited through the coupling terms. This
contrasts with pump−probe experiments, where an additional
excitation source (the pump signal) is applied to one of the
modes, while its effect on the probe mode is measured. The
RO model was derived starting from the Föppl−von Kaŕmań

plate theory, which accounts for geometric nonlinearity (see
Supporting Information S7). Using modal expansion com-
posed of only two modes, followed by a Galerkin procedure, it
is shown in Supporting Information S7 that the governing
partial differential equations reduce the nonlinear ODEs given
in eqs 2 and 3. The coefficients in the ODEs are related to the
mode shapes and their derivatives; and in those cases where
the mode-shapes are known accurately (e.g., circular or square
resonator with all boundaries clamped), the experimental
observations can be quantitatively explained using the RO
model.15,42,43 Similar models have been studied previously,
with slight variations, for the case of 1:1 IR44 and 1:3 IR.45

Depending on the nonlinear terms that are retained, the RO
model can lead to a diverse set of frequency−response curves
such as those shown in Figure 3.45

We performed bifurcation analysis (using MatCont, ref 46)
on a simplified version of the RO model (given below) to
explain the unconventional line shape of mode 7.

ω μ ω̈ + = ϵ[− ̇ − − Λ + ]x x x k x xy F tcos( )1
2

1 1
3 2

(4)

ω μ̈ + = ϵ[− ̇ − − Λ ]y y y k y x y2
2

2 2
3 2

(5)

The nonlinear coupling terms were restricted to x2y2 in the
Hamiltonian, and the coupling strength Λ was used as a fitting
parameter. Mode-specific parameters such as the linearized
frequency ωi and cubic nonlinearity term ki were estimated
using data obtained with low driving forces and the linear
damping parameters were assumed to be equal, that is, μ1 = μ2
= μ. The book-keeping parameter was taken as ϵ ∼ Q−1. For
simplicity, nonlinear damping terms were not included in the
analysis. The different values used in the bifurcation analysis
are listed in Table S2 in Supporting Information S8. The
method of scales was employed (see Supporting Information
S8) to reduce the second-order ODEs to the following set of
first-order ODEs in (p1, q1, p2, q2) space, namely,

μ σ
ω

ω

′ = − − + +

+ Λ + − − +

p p q
k

p q q

p q q p q q p p q

3
8

( )

8
(2( ) ( ) 2 )

1 1 1
1

1
1
2

1
2

1

1
2
2

2
2

1 2
2

2
2

1 1 2 2

(6)

μ σ
ω ω

ω

′ = − + − + +

− Λ + + − +

q q p
k

p q p
F

p q p p q p p q q

3
8

( )
2

8
(2( ) ( ) 2 )

1 1 1
1

1
1
2

1
2

1
1

1
2
2

2
2

1 2
2

2
2

1 2 1 2

(7)

μ σ σ
ω

ω

′ = − − − + +

+ Λ + − − +

p p q
k

p q q

p q q p q q p p q

( )
3
8

( )

8
(2( ) ( ) 2 )

2 2 1 2
2

2
2
2

2
2

2

2
1
2

1
2

2 1
2

1
2

2 1 2 1

(8)

μ σ σ
ω

ω

′ = − + − − +

− Λ + + − +

q q p
k

p q p

p q p p q p p q q

( )
3
8

( )

8
(2( ) ( ) 2 )

2 2 1 2
2

2
2
2

2
2

2

2
1
2

1
2

2 1
2

1
2

2 1 1 2

(9)

Figure 4. Nonlinear behavior of modes 7 and 8. (a) Resonance
spectra obtained under moderate forces; the modes 7 (ωc/2π ∼ 1.34
MHz) and 8 (ωc/2π ∼ 1.37 MHz) exhibit a non-Lorentzian line
shape due to 1:1 IR. (b) The line shape arises from a single mode as
confirmed by a total phase change of π (data shown for the case of 2
Vp−p). (c) Resonance spectra of modes 7 and 8 at higher actuation
amplitudes. (d) Forward and backward sweeps show amplitude
modulations of unequal amplitude in mode 7 and softening-type
hysteresis in mode 8.
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The parameters (p1,q1) and (p2,q2) are related to the slowly
varying amplitudes A and B of the two oscillators by

= − ϕA p q( )ei1
2 1 1

1and = − ϕB p q( )ei1
2 2 2

2. The closeness of

the two frequencies is expressed using a detuning parameter σ1,
where ω2 = ω1 + ϵσ1. A different detuning parameter σ denotes
the closeness of the excitation frequency to the primary
resonance frequency ω1 by ω = ω1 + ϵσ.
Figure 5a shows the computed frequency response diagram

for mode 7 along with the measured data (for 3 Vp−p). The

unstable regions in the diagram are shown using dashed lines,
whereas the stable regions are shown using solid lines. Points a
and c refer to branch points on the diagram, from which
additional fixed points could emerge. H1 and H2 refer to Hopf
bifurcation points along the new branch curve connecting
points a and c. The computed frequency response curve differs
from the Lorentzian line shape in two aspects: (1) it loses
stability along the portion of the curve that connects points a,
b, and c; and (2) Hopf bifurcations occur along the new
branch curve. To see how the experimentally observed line
shape can be explained using the computed diagram, consider
a forward sweep. The oscillator moves along the stable branch
until it arrives at point a, where there is a bifurcation which
causes it to traverse the new branch curve until it reaches the
first Hopf point H1. According to the Hopf bifurcation
theorem, the motion now is no longer periodic but amplitude
modulated, which in experiments causes an overshoot from the
predicted diagram until it reaches point H2.

12 The oscillator
then follows the stable branch after traversing the second Hopf
bifurcation point H2. Frequency−response curves were also
computed for increasing forces, as shown in Figure 5b,c along

with the measured data, showing good agreement between the
two. The distance between the Hopf bifurcation points
increases with the driving force, indicating that amplitude-
modulated motion occurs over a wider frequency range. Figure
5d shows a bifurcation set for the coupled system, where at a
sufficiently low driving force, both Hopf bifurcation points are
predicted to disappear.
MatCont automatically computes the first Lyapunov

coefficient for Hopf bifurcation points which can be used to
classify them as either sub or supercritical. Because the first
Lyapunov coefficient is positive for H1, it is a subcritical Hopf
bifurcation and may lead to an unstable limit cycle and
eventual chaotic motion. However, because the first Lyapunov
coefficient is negative for point H2, it is a supercritical Hopf
bifurcation and is characterized by a stable, limit cycle. This
prediction is reflected in the difference between the forward
and backward swept data that are shown in Figure 4d. The
forward swept trace first passes through the subcritical Hopf
bifurcation, and consequently, the peak amplitude is higher
when compared to the backward swept trace (which passes
through the supercritical Hopf bifurcation first).
Interestingly, the location of the subcritical Hopf bifurcation

point H1 varies linearly with the force magnitude F, and
therefore, it could serve as a simple scheme for the detection of
weak forces. The supercritical Hopf bifurcation point H2 has a
linear dependence for intermediate force values and plateaus
subsequently. As per the bifurcation diagram in Figure 5d, the
limit of detection corresponds to the value of the driving force
where the Hopf bifurcations disappear. The actuation force on
the nanoresonator results from inertial coupling with the
motion of the PZT disc. For a harmonic base excitation d =
d0sin ωt of the PZT, the inertial force acting on the resonator
is given by F = Tmrω

2d0, where mr is the mass of the
nanoresonator and T is the transmission coefficient. We
assume ideal transmissivity (i.e., T = 1) and take the following
parameter values: linearized frequency ω/2π ∼ 1.34 MHz,
resonator mass mr ∼ 10 fg, peak amplitude d0 = d33Vlim, where
d33 ∼ 330 pmV−1 is the piezoelectric coefficient of the PZT
disc and Vlim ∼ 1.5 V is the driving voltage at which the Hopf
bifurcation points disappear. The lowest detectable force can
be estimated as Fmin ∼ 0.35 pN. The sensitivity in the current
implementation is limited by the fact that the force of interest
is also responsible for driving the resonator into the nonlinear
regime, and consequently the bifurcation points disappear at
low force magnitudes. Thus, the limit of detection could be
further improved by ensuring that the resonator is in the
nonlinear regime even without the force of interest, for
example, by employing parametric amplification.13,47 In
parametric amplification, the response of an oscillator can be
amplified by applying a pump signal at twice the linear
resonant frequency, ωp ≈ 2ω0, namely,

γ η ω λ ω ω+ + + − =d x
dt

x
dx
dt

t x
F t

m
( ) (1 cos )

cos2

2
2

0
2

p
e
(10)

where λ denotes the amplitude of the parametric drive. When
the drive amplitude is increased beyond a certain critical value
λc, the resonator enters the regime of self-oscillations, even in
the absence of a driving force. Such regime can be realized in
TMDC resonators using capacitive actuation of the back gate
(see ref 48). Further, under parametric amplification, TMDC

Figure 5. Bifurcation analysis predicts Hopf bifurcations for mode 7.
(a) The frequency−response curve obtained from the bifurcation
analysis is overlaid on the measured data at 3 Vp−p. The stable regions
are indicated using solid lines, unstable regions using dashed lines, and
Hopf bifurcation points (H1 and H2) using arrows. The computed
frequency−response curves at increasing drive forces are shown in (b)
and (c) along with the measured data at 3.5 and 5.0 Vp−p. (d) A
bifurcation set is shown with the two Hopf points; the computed
curves were extrapolated to lower values of F to identify the critical
value below which the Hopf points vanished.
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resonators enter the nonlinear regime at relatively small RF
voltages (−20 dBm).
To quantify the improvement in sensitivity with parametric

amplification, we consider a force as resolvable if the effected
change in the bifurcation frequency is greater than intrinsic
fluctuations (δf) in the frequency,13 that is, κFmin ≥ δf, where κ
is the slope of the bifurcation frequency vs force curve (units of
Hz/N). By assuming an extremely conservative value of δf = 50
Hz (for an integration time of 1 s, ref 29) and extracting κ ≈
1017 Hz/N from the bifurcation diagram for Hopf bifurcation
point H2, we estimate Fmin = 500 aN. Taken together, the
estimates indicate that force sensitivity in the nonlinear regime
can be significantly improved with parametric amplification.
We would like to emphasize that this improvement in force
sensitivity with a parametric drive is possible only in the
nonlinear regime; in the linear regime of operation, a
parametric drive would equally amplify both the resonator
displacement as well as the thermal noise force, resulting in no
net improvement.47

The qualitative implications from the results presented here
on the nonlinear behavior of 2D WS2 are rather general and in
line with prior experimental and numerical studies. In
macroscale plates, the strongly nonlinear behavior transitions
from weakly nonlinear to eventual chaos via energy exchanges
between internally resonant modes. The exact nature of IR
(i.e., 1:1 or 1:2, etc.) depends on the energy of vibration and
imperfections in the plate.49 The wide frequency tunability
(>10%, using optical or electrostatic means) in 2D nano-
resonators should allow a three mode alignment and the
engineering of more complex IR phenomena (e.g., 1:1:2 or
1:1:3), which are interesting from a fundamental viewpoint.
We also note that the force sensitivity of nonlinear 2D
nanoresonators can be further enhanced by increasing the
sensitivity of the bifurcation points to the applied force (κ). A
first step in this direction would be a systematic analysis of
different kinds of IR in well-defined geometries (square or
circular, with all boundaries clamped) and the bifurcation
points therein. Because the mode shapes agree with theory in
these regular geometries, a major advantage is that the
coefficients in the RO model can be determined exactly
using the formalism presented in Supporting Information S7.
An order of magnitude improvement in κ would lead to a force
sensitivity that is comparable with the best room-temperature
force sensors (see Figure 6).

A hitherto unexplored application of nonlinear mode
coupling in 2D nanoresonators is the synchronization of the
coupled modes.40 The major advantages of using 2D materials,
vis-a-̀vis micromachined Si-based resonators, are (1) the
coupled oscillators can be realized in the same resonator (the
coupled modes shown in Figure 3, for instance), avoiding the
need for complex fabrication, (2) the widely tunable resonant
frequencies and geometric nonlinearity can be exploited to
increase the synchronization range, and (3) the high
frequencies involved facilitate signal processing applications
in the RF region. Further, synchronization would in turn
reduce the phase noise and improve the frequency stability in
2D nanoresonators.50

In summary, we have demonstrated the principles for
engineering a force sensor that utilizes geometric nonlinearity
in a monolayer WS2 nanoresonator. With the addition of a
parametric drive, attoNewton sensitivity should be achievable at
room temperature. We also showed that the room-temperature
Q-factor (∼1000) in the fabricated monolayer nanoresonator
is an order of magnitude higher than prior reports on TMDC
resonators. It would be interesting for future work to
investigate the improvement of Q-factor at cryogenic temper-
atures and to identify the different sources of dissipation.
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