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Abstract

The dynamic delamination in woven glass ®ber reinforced plastic (GRP) composite is studied with a 3D ®nite deformation an-

isotropic viscoplastic model in conjunction with contact/cohesive laws. The large deformation of the material during impact loading is

described through an anisotropic plasticity model in total Lagrangian co-ordinates whose coe�cients are determined experimentally.

The interaction between lamina is analyzed through a contact/interface model. The tensile and shear tractions in zero thickness in-

terface elements, embedded between lamina, are calculated from interface cohesive law. The interface cohesive law describes the

evolution of these tractions in terms of normal and tangential displacement jumps and other interface parameters. The compressive

traction at the interface is calculated through the impenetrability condition employed in the contact module. Once the e�ective dis-

placement jump exceeds a speci®ed critical value, the interface elements are assumed to have failed, i.e., delamination is said to have

taken place. Three interface cohesive laws are proposed to describe the delamination process. It is assumed that loading of interface

takes place reversibly up to a speci®ed value of the displacement jump followed by irreversible loading beyond this value. This feature

represents a partial damage of the interface in the event of unloading. Dynamic delamination in the woven GRP composite is studied

through analyses of plate-on-plate impact experiments. The heterogeneity of composite materials leading to wave dispersion and

scattering is modeled by considering a layered composition of the GRP plate. Each lamina is assumed to be made of three layers of

materials. The middle layer of half the thickness of lamina is considered as GRP and the two end layers of equal thicknesses are

considered to be of matrix material, i.e., polyester resin. The possible delamination of the composite material under compressive shock

loading is shown to occur due to local shear e�ects. This is modeled by considering waviness of the interface between lamina. Interfaces

with ¯at as well as two types of wavy structures are analyzed. Analyses are carried out to establish the e�ect of critical displacement

jump, mixed mode coupling parameter employed in interface laws, interface waviness and the e�ect of interface laws. The response of

GRP composite during impact is characterized in terms of the free surface velocity, delamination event vs. time and interface normal

and shear stresses. The interface normal and shear stresses are obtained directly from the interface cohesive laws, as well as, by ex-

trapolating continuum stresses from integration points of the neighboring triangular elements to the interface. It is shown that the ®nite

element model predicts the response of the material in con®rmation with the available experimental results. The wave dispersion and

scattering e�ects are obtained in the form of attenuation of shock stress and free surface velocity. The model predicts partial del-

amination during compressive shock loading above a certain threshold due to local shear and mode coupling. Ó 2000 Elsevier Science

S.A. All rights reserved.

AMS subject classi®cation: 2; 6; 13; 25; 49; Damage mechanics; Composites; Impact; Fiber; Delamination; Cohesive laws

1. Introduction

Fiber reinforced plastic (FRP) composite materials, especially the glass ®ber reinforced plastic (GRP)
composites, are potential materials for designing weight e�cient armor systems and combat vehicles. Es-
tablishing their structural integrity under dynamic conditions at high strain rates and their post-impact
behavior become pre-requisite in such crucial applications. The failure of FRP materials under impact
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loading is complex due to presence of various mechanisms. The incident kinetic energy is dissipated through
the spread of failure laterally as well as through the thickness. Depending upon the incident kinetic energy
and target±impactor con®guration and composition, the failure may be in the form of one or combination
of several failure mechanisms. For example, Espinosa et al. [1] have studied the penetration behavior of
woven GRP composite made of S-2 glass ®bers embedded in a polyester resin matrix with approximately
60% ®ber by volume. The normal impact experiments are carried out with a conical shaped penetrator at
impact velocity of 180±200 m/s. Three distinctive zones of damage have been observed which includes
extensive delaminations and ®ber shearing, tensile ®ber failure, large ®ber de¯ection and lastly ®ber mi-
crofracture and buckling.

The simulation of the response of FRP materials under impact loading needs to account for the various
factors in¯uencing their response, e.g., large deformation, inelastic constitutive behavior, failure, delam-
ination, contact/friction, etc. There are numerous work on modeling of large deformation of metals [2].
However, the same is not true in the case of FRP materials. Modeling an appropriate yield function and the
plastic ¯ow rule to describe the nonlinear anisotropic behavior of the FRP materials is a challenge in itself,
e.g. [3±8], etc. amongst others. The approach has been to computationally homogenize the directional
properties of composite materials. This helps in deriving a formulation applicable for such materials in
general and amenable for easy implementation in a ®nite element computer program.

Due to inherent multi-material heterogeneous composition, other factors contribute to failure of FRP
materials under impact loading [10]. The combined e�ect of some crucial features of these material remain
unexplored. For example, waviness of ®bers leads to interlaminar shear failure of the materials [9±12].
Wave re¯ection between components with di�erent shock impedance leads to strong shock wave dispersion
causing loss of spall strength in some cases [13±17], etc. Dandekar and Beaulieu [18] have carried out
experiments to determine the compressive and tensile strength of a woven GRP composite. The composite
in their experiments is made of S-2 glass woven roving in a polyester resin matrix with resin content of 32%
by weight. Considering di�erent impact velocity and thickness of target and impactor plates, they have
measured the stress and free surface velocity in the shock and re-shock state to obtain the spall strength and
nonlinear stress vs. particle velocity hugoniot of the material. One of the important ®ndings of their in-
vestigation is that the delamination strength of the woven composite is 50 MPa for a compressive shock
wave amplitude of 230 MPa. They found a negligible spall strength for a compressive shock wave amplitude
of 374 MPa, indicating that the interface between lamina fails under higher compressive stresses. This
shows that local shear stresses generated due to the geometric heterogeneity of the FRP materials may
cause delamination even under compressive loading. The same woven composite has been selected for the
present study.

In addition, numerous works exist on study of the failure behavior of composite materials under dif-
ferent loading conditions. Detailed review of these works may be found in [19,20]. These works re¯ect that
the matrix properties govern the damage threshold and extent of impact damage [21±23] while the ®ber
properties govern the resistance to penetration. Higher ®ber strength provides better impact resistance [24].
According to Beaumont [25], the post-debond ®ber sliding is the primary energy absorbing mechanism in
glass ®ber-reinforced composites, whereas ®ber pull-out is responsible for much of the toughness in a
carbon ®ber composite. Similarly, the interface between matrix and lamina and those between laminas
a�ect the impact resistance of composites. The transverse fracture energy of a composite directly depends
on the matrix±lamina bond strength [26±28]. Measures to increase the interply bond strength have been
suggested to enhance the impact resistance of composites [29,30], although their success is limited due to the
locality of failure under impact.

Modeling these inherent characteristics of FRP materials to determine their response at high strain rates
remain a formidable challenge. Recourse has been sought to arrive at simpli®ed models to study selected
behavior of these materials [31,32]. Present work focuses on studying the delamination behavior in com-
posites under dynamic conditions using cohesive surface formulation. The cohesive surface formulation has
gained prominence in simulating crack initiation, propagation and fragmentation in brittle materials
[33±36]. In the present work, dynamic delamination in woven GRP composite [1] is studied using the ex-
perimental data of Dandekar et al. [18,37]. For considering the wave scattering and dispersion, the com-
posite material is modeled as alternate layers of GRP composites and polyester resin along the thickness
direction. The ®nite deformation anisotropic plasticity model in total Lagrangian coordinates of Espinosa
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et al. [4] is used to describe the large deformation of GRP material. The von-Mises viscoplastic model is
used for materials other than GRP. The shock pressure is calculated from an equation of state appropriate
to each material. The contact/interface model of Espinosa et al. [38] is used to analyze the interface between
laminas before and after delamination. Two new interface cohesive laws are proposed to describe the
constitutive behavior of zero thickness interface elements embedded between laminas. The model is ®rst
validated with the experimental data. It is then used to study dynamic delamination under the in¯uence of
various interface parameters. It is found that the model is able to predict the reduction in the spall strength
of GRP composites under compression as found experimentally. A detailed description of the explicit ®nite
element formulation in the total Lagrangian co-ordinates, viscoplasticity models for homogeneous and
®ber composites, and the contact/interface model can be found in [38,4]. A description of the ®nite de-
formation anisotropic plasticity model, the interface cohesive laws and the numerical analyses are given in
the following sections.

2. Finite deformation anisotropic plasticity model

As shown in Fig. 1, considering a solid with volume B0 in the reference con®guration, and a deformation
process characterized by the mapping x�X; t�, a material point initially at X will be located at x � X� u

after deformation, in which u is the displacement vector. A displacement-based ®nite element formulation is
obtained from the weak form of the momentum balance or dynamic principle of virtual work. The weak
form at time t in total Lagrangian co-ordinates, i.e., referred to the reference con®guration, is given byZ

B0

r0T0
� � q0�b0 ÿ a�� � gdB0 � 0; �1�Z

B0

T0 : r0gdB0 ÿ
Z

B0

q0 b0� ÿ a� � gdB0 ÿ
Z

S0r

t � gdS0 � 0; �2�

where T0 is the ®rst Piola±Kirchho� stress tensor at time t, b0, a, and t are the body force vector, accel-
eration vector, and boundary traction vector on volume B0 and boundary S0r, respectively. Virtual dis-
placement ®eld g is assumed to be admissible, and q0 represents the material density per unit volume in the
reference con®guration. The symbol r0 denotes the material gradient with respect to the reference con-
®guration, and `:' is used to denote the inner product between second order tensors, e.g., A : B � AijBji,
where the summation convention on repeated indices is implied.

Alternately, the weak form of the momentum balance, in terms of spatial quantities, is given byZ
B0

s : rsgdB0 ÿ
Z

B0

q0�b0 ÿ a� � gdB0 ÿ
Z

S0r

t � gdS0 � 0; �3�

in which superscript s stands for the symmetric part of the tensor, s � FT0 is the Kirchho� stress, F the
deformation gradient at time t, and r the spatial deformation tensor. As Eq. (1) shows, the equation of

Fig. 1. Total Lagrangian continuum model.
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motion in its weak form states that the work done by the stresses s over strainsrsg equals the work done by
applied body forces, inertia forces, and surface tractions. In the absence of the body force and boundary
traction, the above equation reduces to the equation for explicit integration, i.e., M �U � ÿfint, where M is
the global mass matrix, �U the global acceleration vector and fint the internal force vector. The impactor as
well as all the layers of composite target are discretized spatially into six node quadratic triangular ele-
ments. The mass of triangular elements is lumped at their nodes to get the global lumped mass matrix.
Details on the numerical integration of the above equations can be found in [38,39].

The constitutive response of the GRP composite is formulated in terms of the Green±Lagrange strain
tensor E and the work conjugate second Piola±Kirchoff stress tensor S [38]. The Green±Lagrange strain
rate tensor at time step t � Dt, is given as,

_Eij � 1

2Dt
��FkiFjk�t�Dt ÿ �FkiFjk�t�; �4�

where Fij is the deformation gradient and Dt the incremental time step. All quantities in the above equation
are de®ned in the global co-ordinates. The second Piola±Kircho� stress rate tensor is given by a hyperelastic
constitutive law, which in rate form is given by,

_Sij � Cijkl
_Ee

kl; �5�
where Cijkl is the elastic anisotropic material sti�ness constitutive tensor in the global coordinates and _Ee

ij
the elastic component of the Green±Lagrange strain rate tensor. As given in [38], the Kircho� stress s and
second Piola±Kircho� stress S are related through the relation s � FSF T. In the case of anisotropic ma-
terials, the elastic constitutive matrix �Cl� is de®ned in the local coordinate system of the lamina. It is
transformed to C � T TClT to obtain the constitutive matrix in the global coordinates following standard
transformation procedures.

The elastic components of the strain rate tensor are obtained by an additive decomposition of the total
Green±Lagrange strain rate, namely,

_Ee
ij � _Eij ÿ _Ep

ij; �6�
where _Ep

ij is the plastic strain rate which is based on the associative ¯ow rule, viz.,

_Ep
ij � _k

of
oSij

; �7�

where f is the ¯ow potential and _k the plastic rate proportionality factor. The inelastic behavior of the
composite is modeled based on a ¯ow potential quadratic in the second Piola±Kirchoff stress tensor, as
proposed by Espinosa et al. [4], i.e.,

2f �Sij� � a11S2
11 � a22S2

22 � a33S2
33 � 2a12S11S22 � 2a13S11S33 � 2a23S33S22 � 2a44S2

23 � 2a55S2
13

� 2a66S2
12: �8�

Experimental observations show that ®ber composites behave linearly up to failure if the load is applied
in the ®ber direction. Hence, for orthogonal ®bers oriented along directions 1 and 2, it is assumed that
Ep

11 � Ep
22 � 0. The above ¯ow potential then reduces to,

f �Sij� � 1

2
S2

33 � a44S2
23 � a55S2

13 � a66S2
12: �9�

For equal ®ber volume fractions in the principal 1 and 2 directions, the additional constraint of a44 � a55 is
obtained which further reduces the yield function to,

f �Sij� � 1

2
S2

33 � a44�S2
23 � S2

13� � a66S2
12: �10�

Experiments carried out by Espinosa et al. [4] show that woven ®ber composites behave approximately in a
linear fashion, up to failure, when loaded in the transverse direction, i.e., Ep

33 � 0. Therefore, the above ¯ow
potential reduces to,
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f �Sij� � a44�S2
23 � S2

13� � a66S2
12: �11�

De®ning an e�ective stress as,

�S �
������
3f

p
�12�

and using Eqs. (8) and (12), the rate of plastic work is given by,

_W p � Sij _Ep
ij � �S�_E

p
: �13�

The proportionality factor of Eq. (7) is obtained as

_k � 3�_E
p

2�S
; �14�

where �_E
p

is the e�ective plastic strain rate. The e�ect of strain rate and temperature can be modeled by
de®ning the material strength in terms of an e�ective stress which includes temperature and rate terms,
namely,

�_E
p � �_E

p

0

�S
g� �Ep; T �

" #m

if �S > g� �Ep; T �; �15�

g� �Ep; T � � �Sy 1

�
ÿ T ÿ T0

Tm ÿ T0

� �a�
; �16�

where �Sy is the ¯ow stress at reference plastic strain rate �_E
p

0 and temperature T0, Tm the matrix temperature

of the transition material, �S the ¯ow stress at current plastic strain rate �_E
p

and temperature T, m and a are
the rate and temperature sensitivity exponents, respectively. The reference ¯ow stress �Sy is de®ned by an
experimentally found power law, viz.,

�Sy �
�Ep

A

 !1=n

; �17�

where n is the strain hardening exponent. A summary of the constitutive equations in discrete form is given
in Table 1.

To account for a nonlinear response during unloading, another power law can be used. The coe�cients
used in the yield potential, given above, can be identi®ed from o�-axis and out-of-plane shear tests as given
in [4].

3. Interface cohesive laws

The interface cohesive laws, discussed in this work, are embodied in a contact/interface approach as
proposed by Espinosa et al. [38]. As shown in Fig. 2, the interface elements are embedded between laminate
plies along their interface to analyze the cohesive interaction between the laminas. The tensile and shear
tractions developed by the interface element are calculated from the interface cohesive law. The interface
cohesive law describes the evolution of these tractions and the coupling between them as a function of
relative normal and tangential displacements, and their rate along the interface. The compressive traction, if
any, is calculated through the impenetrability condition employed in the contact module. Once the e�ective
displacement jump exceeds a speci®ed critical value, the interface element is assumed to have failed, i.e.,
delamination is said to have taken place. The new free surfaces of the two laminas are automatically
created. Thereafter, the interaction between the two laminas is described solely by the contact algorithm.

The formulation of the interface elements and the two new cohesive laws together with the one already
proposed are given below.
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3.1. Interface element

The zero thickness 4-noded quadrilateral interface element, used in this study, is shown in Fig. 3. The
elements are inserted between two laminas such that nodes 1 and 2 belong to one lamina and nodes 3 and 4
to the other. The displacement jumps are de®ned at the mid plane of the element. Hence, the shape factors
of the element are also given on its mid-plane as if it was a 2-noded linear element, i.e.,

Fig. 2. Interface/contact model with ®nite kinematics. Fig. 3. The interface element with global and local coordinates.

Table 1

Summary of constitutive equations

_St�Dt � C _Ee
t�Dt

_Et�Dt � _Ee
t�Dt � _Ep

t�Dt

_Ep
t�Dt � _k

of
oSt�Dt

� 3�_E
p

2�S
@f

oSt�Dt
� �_E

p

t�DtNt�Dt

Nt�Dt � 3

2

of
oSt�Dt
�St�Dt

� 3

2�S

0 2a66S12 2a55S13

2a66S12 0 2a44S23

2a55S13 2a44S23 S33

266664
377775

t�Dt

�St�Dt �
���������������������������
3ft�Dt�Sij�t�Dt

q
g� �Ep

t�Dt; T � � �Sy;t�Dt 1

�
ÿ T ÿ T0

Tm ÿ T0

� �a�

�Sy;t�Dt �
�Ep

t�Dt

A

 !1
n

�_E
p

t�Dt � �_E
p

0

�St�Dt

g� �Ep
t�Dt; T �

" #m
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N1 � �1ÿ n�=2;

N2 � �1� n�=2:
�18�

In essence, this makes the element similar to a 4-noded quadrilateral di�erential element. De®ning the
inclination of the element with the global X -axis by angle h, in the current coordinates, the normal and
tangential displacements in the plane of the element can be obtained from the global displacements at node
i as:

U n
i � Uyi cos�h� ÿ Uxi sin�h�;

U t
i � Uxi cos�h� � Uyi sin�h�: �19�

The normal and tangential displacement jumps at the interface can then be written at the mid-plane of the
element as:

Un1 � Un
4 ÿ U n

1 ;

Un2 � Un
3 ÿ U n

2 ; �20�
Ut1 � U t

4 ÿ U t
1;

Ut2 � U t
3 ÿ U t

2:

The normal tensile and shear traction at the interface are determined from the interface cohesive law. The
nodal forces in the plane of the element are computed from the known interface traction as;

F 0 �
Z

S0
NT

s s dS0; �21�

where F 0 is the force vector �Ft; Fn�, s the computed interface traction vector �st; sn� and Ns the shape
function vector, all quantities are de®ned in the local coordinates of the element. The integration of the
above equation is carried out using a two points quadrature rule. The computed forces are then trans-
formed to the global coordinates as,

Fx � Ft cos�h� ÿ Fn sin�h�;
Fy � Fn cos�h� � Ft sin�h�: �22�

The forces so obtained at the mid-plane of the element are applied to nodes 1 and 2 and equal and opposite
forces are applied to nodes 3 and 4.

3.2. Interface cohesive laws

The interface cohesive law de®nes the evolution of normal and tangential traction and the coupling
between them as a function of the relative normal and tangential displacement jumps, respectively. The
equivalent traction s�k� is given in terms of a non-dimensionalized e�ective displacement jump parameter k
de®ned as:

k �
�������������������������������������

Un

dn

� �2

� Ut

dt

� �2
s

; �23�

where Un and Ut are the actual normal and tangential displacement jumps at the interface, and dn and dt the
critical normal and tangential displacement jumps at which the interface fails or delamination takes place in
pure normal or pure shear mode, respectively. The value of k � 0 signi®es the unstressed state of the el-
ement and k � 1 signi®es total separation. As described earlier, the tensile and shear state of the interface
element up to k6 1, is determined from the interface cohesive law while the compressive state is determined
from the contact law. After complete debonding, i.e., k � 1, the interface is analyzed solely from the contact
law. The procedure adopted in the explicit analysis is summarized in Table 2.

It is assumed here that the interface traction evolve reversible up to a value of k � kc, similar to the state
of elastic loading and unloading in materials. Beyond kc, the unloading from a state ku and subsequent
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loading takes place irreversibly along the path joining ku to k � 0. The three cohesive laws used in the
analyses are given as follows.

3.2.1. Interface law I
In the ®rst law, based on Tvergaad model [40], the equivalent traction s, normal traction sn and tan-

gential traction st evolve quadratically with normalized displacement jumps as:

s�k� � 27

4
smax�1ÿ 2k� k2�; �24�

sn � Un

dn

s�k�; st � a
Ut

dt

s�k�; 06 k6 1; �25�

Where smax is the maximum normal traction which the interface can develop before failure and a the pa-
rameter coupling the normal and shear traction. The evolution of s, sn and st given in the above equations
are shown in Fig. 4. It can be easily veri®ed from Eq. 25 that the maximum normal and shear traction given
by the cohesive law are smax and asmax and the maxima occur at k � 1=3.

In order to simulate delamination, the area under the curve for normal traction in the absence of tan-
gential traction, shown in Fig. 4b, gives the critical strain energy release rate GIc for Mode I delamination.
Similarly, the area under the curve for tangential traction in the absence of normal traction, shown in
Fig. 4d, gives the critical strain energy release rate GIIc for Mode II delamination. The law yields GIc and
GIIc as,

GIc � 27

48
smaxdn; GIIc � aGIc: �26�

A physical meaning for parameter a then follows as:

a � GIIc

GIc

: �27�

The interface cohesive law is completely de®ned if the experimental values of any three out of the four
parameters in Eq. (26) are known.

The above interface law was extended by Espinosa et al. [38] to include rate e�ects. The law can be
further extended to include the e�ect of temperature on the interface traction by setting,

smax � s0
max 1

"
� b ln

_k
_k0

 !#
1

�
ÿ T ÿ T0

Tm ÿ T0

� �c�
; �28�

where s0
max is the maximum traction at a reference rate of displacement jump _k0 and reference temperature

T0, smax the maximum traction at the current rate of displacement jump _k and temperature T, Tm the melting
or transformation temperature of the material and b, c are the rate sensitivity and temperature sensitivity
exponents, respectively.

The reversible and irreversible unloading is implemented by taking kc same as the value of k at which the
traction are maximum, i.e., kc � 1=3. Accordingly, the normal and tangential traction are given as:

For loading and unloading in the range 06 k6 kc

sn � Un

dn

s�k�; st � a
Ut

dt

s�k�: �29�

Table 2

Contact and Interface calculations based on interface traction

Load State Tn Tt

Tension-shear k < 1 Interface Interface

kP 1 Contact Open

Compression-shear k < 1 Contact Interface

kP 1 Contact Friction
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For loading in the range kc < k6 1, or, ku < k6 1 , where ku is the value of k from where the last unloading
had taken place,

sn � Un

dn

s�k�; st � a
Ut

dt

s�k�: �30�

And lastly, for unloading and reloading in the range 06 k6 ku

sn � Un

dn

s�ku� k
ku

; st � a
Ut

dt

s�ku� k
ku

: �31�

Fig. 4. Law I: The evolution of traction with loading and unloading.
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3.2.2. Interface law II
The interface law proposed here states that the interface between two laminas is intact without any

relative displacements till the interface traction reaches the maximum value. Once the maximum traction is
reached, the interface starts failing and the traction reduces to zero linearly up to the critical e�ective
displacement jump, i.e., k � 1. This necessitates that the interface law be employed only after the maximum
traction is attained. The procedure would, then, be similar to the node duplication technique employed in
modeling of crack initiation and propagation. In order to avoid these complications and keep the identity
of interface elements from the beginning, it is assumed here that the traction can increase reversibly and
linearly to its maximum value up to a very small value of k � kc. Beyond kc, the traction reduces to zero up
to k � 1:0 and any unloading takes place irreversibly as explained earlier. The value of kc is selected such
that the wave speeds in the material with interfaces is the same as the ones in the material without interfaces
during reversible loading. The interface law, so derived, is given as, for loading and unloading in the range
06 k6 kc

sn � Un

dn

smax

kc

; st � a
Ut

dt

smax

kc

: �32�

For loading in the range kc < k6 1;

sn � smax

U c
n

dn

1ÿ k
1ÿ kc

; st � asmax

U c
t

dt

1ÿ k
1ÿ kc

; �33�

where U c
n and U c

t are the normal and tangential displacement jumps attained at k � kc.
For unloading and reloading in the range 06 k6 ku where ku > kc is the last value of k from where

unloading took place,

sn � Un

dn

smax

ku

; st � a
Ut

dt

smax

ku

: �34�

For loading in the range ku < k6 1;

sn � smax

Uu
n

dn

1ÿ k
1ÿ ku

; st � asmax

Uu
t

dt

1ÿ k
1ÿ ku

; �35�

where U u
n and U u

t are the normal and tangential displacement jumps attained at k � ku during reverse
loading.

The cohesive law, as given above, is shown in Fig. 5. In the absence of Mode II delamination, the area
under the curve of sn gives the GIc which can be written as:

Fig. 5. Law II: The evolution of traction with loading and unloading.
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GIc � 1

2
dnsmax: �36�

Hence, the interface law can be de®ned completely if the experimental values of any two parameters are
known.

3.2.3. Interface law III
Similar to law II, this law also states that the interface between two bodies is intact without any relative

displacements till the maximum traction is reached. However, instead of reducing linearly, the traction
remains constant at its maximum value till the failure of the interface at the critical e�ective displacement
jump, i.e., k � 1. At failure, the traction suddenly reduces to zero. In the manner similar to above, it is
assumed that the interface traction increases reversibly and linearly to its maximum value up to k � kc,
beyond which it remains constant at that maximum value. The value of kc is once again determined to
obtain identical wave speeds in the solid with and without interfaces. In order to eliminate any numerical
oscillation while reducing the value of traction to zero, suddenly at k � 1:0, it is assumed that the traction
reduces linearly to zero from a value of k � kf to k � 1. The value of kf � 0:9995 is used in all the analyses.
The interface law, so derived, is given as follows.

For loading and unloading in the range 06 k6 kc,

sn � Un

dn

smax

kc

; st � a
Ut

dt

smax

kc

: �37�

For loading in the range kc < k6 kf ,

sn � U c
n

dn

smax

kc

; st � a
U c

t

dt

smax

kc

; �38�

where U c
n and U c

t are the normal and tangential displacement jumps attained at k � kc.
For loading in the range kf < k6 1,

sn � smax

U f
n

dn

1ÿ k
1ÿ kf

; st � asmax

U f
t

dt

1ÿ k
1ÿ kf

; �39�

where U f
n and U f

t are the normal and tangential displacement jumps corresponding to the value of k � kf .
For unloading and reloading in the range 06 k6 ku, where, kc < ku6 kf ,

sn � Un

dn

smax

ku

; st � a
Ut

dt

smax

ku

: �40�

For loading in the range ku < k6 kf ,

sn � U u
n

dn

smax

ku

; st � a
U u

t

dt

smax

ku

; �41�

where U u
n and U u

t are the normal and tangential displacement jumps attained at k � ku during reverse
loading.

For unloading and reloading in the range 06 k6 ku, where, kf < k6 1:0,

sn � Un

dn

smax

ku

; st � a
Ut

dt

smax

ku

: �42�

For loading in the range ku < k6 1:0,

sn � smax

Uu
n

dn

1ÿ k
1ÿ ku

; st � asmax

Uu
t

dt

1ÿ k
1ÿ ku

: �43�

The interface cohesive law so given is shown in Fig. 6. In the absence of Mode II delamination, the area
under the curve of sn gives the GIc and can be written as:
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GIc � 1

2
�1� kf ÿ kc�dnsmax �44�

from which, the interface law can be completely de®ned if the experimental values of any two out of the
three parameters are known.

4. Model de®nition

The above formulation is used to study the dynamic delamination in woven GRP composite [1]. Three
plate-on-plate experiments have been chosen from the literature for this purpose. In experiment 1 [37],
shown schematically in Fig. 7, a GRP plate impacts normally on the sample GRP plate, which is backed by
another GRP plate. The free surface velocity of the back plate is measured by VISAR and the stress at the
back of the sample plate is measured by a manganin gauge. Fig. 8 shows the schematic of Experiments 2
and 3 ([18], shots 518 and 521-1). In these two experiments, a PMMA plate impacts normally on a sample
GRP plate. The back plate is not present in both these experiments. The free surface velocity of the sample
plate is measured by VISAR. The dimensions of di�erent plates and impact velocity in the three experi-
ments are given in Table 3. The free surface velocity pro®le for Experiment 1 and maximum values of the
free surface velocity and stress for Experiments 2 and 3 are also available from [37,18], respectively.

The nature of wave propagation in the woven composite is essentially three dimensional. In order to
reduce the computational complexities and required resources, explicit analyses are carried out based on

Fig. 6. The interface cohesive law III.

Fig. 8. Schematic of Experiments 2 and 3 chosen for analyses.Fig. 7. Schematic of Experiment 1 chosen for analyses.
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plane strain assumption. Neglecting edge e�ects, at the two ends of the GRP plates, analyses are carried out
for a small width (strip) of the impactor and target plates by imposing periodic boundary conditions of
equal displacement, velocity and acceleration at the sides of the strip. This assumption holds ``exactly'' for
an interval of time equal to the time required by release boundary waves to reach the observation point, i.e.,
stress or particle velocity measurement point.

The heterogeneity of composite materials leads to dispersion and scattering of stress waves. As discussed
earlier, this e�ect is modeled by considering a layered composition of the GRP plates. Neglecting the
presence of voids and dispersion due to them, each lamina of the GRP plate is assumed to be made of three
layers of materials. The middle layer with half the thickness of a lamina, is considered to be GRP with
anisotropic elastic and viscoplastic properties. The two end layers of equal thicknesses are assumed to be
made of the polyester resin, i.e., the matrix material, with isotropic elastic and viscoplastic properties.

This layered geometry is consistent with the observation of ``matrix islands'' in cross-section of the GRP
material. It is assumed that the matrix±GRP and GRP±matrix interface within lamina are perfectly glued,
so that there is no relative displacement between them. The spatial discretization is carried out in such a
manner that no element's edge intersect the matrix±GRP and GRP±matrix bond line. Results are presented
for the layered composition as well as for the case when the total thickness of each lamina is considered as
GRP, with anisotropic elastic and viscoplastic properties.

As discussed in [18], the GRP composite delaminates under compressive shock loading due to local
e�ects. The heterogeneity of the material, as modeled above, is one source for inducing local shear e�ect. An
additional source is the wavy characteristic of the lamina interface as shown in the optical micrograph in
Fig. 9. Analyses have been carried out with ¯at as well as wavy interfaces between laminas. Two types of
waviness have been considered. The Wavy I has a hacksaw teeth shape while Wavy II has a periodic double
ramp shape. The angle of the ramp with laminate plane, measured experimentally, is taken as 12° in both
the cases. Schematics of the layered con®guration together with the ¯at and wavy interfaces are shown in
Fig. 10, in which l is the strip width considered in analyses and Tl is the lamina thickness (Tl�Plate
thickness/Number of laminates). As shown in the ®gure, starting from the impact plane, the laminas and

Fig. 9. Optical micrograph of the woven GRP composite.

Table 3

Geometrical dimensions and impact velocity used in analyses

Dimensions of target and impactor plates Exp. 1 Exp. 2 Exp. 3

Target Plate I Thickness Tt (mm) 7.02 7.179 3.27

No. of laminates 11 11 5

Plate II Thickness Tt (mm) 6.91 Not present Not present

No. of laminates 11

Thickness Ti (mm) 2.96 1.628 1.6

Impactor Plate Material Composite PMMA PMMA

No. of laminates 5 ± ±

Width L (mm) 51.2±54 55 55

Impact velocity V (m/s) 85 86 164
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Fig. 10. Schematics of the layered con®gurations and interfaces considered in analyses.

Table 4

Materials properties used in analyses

Materials properties Units

GRP Polyester resin PMMA

Density

q0 � 1952:0 q0 � 1800:0 q0 � 1185:0 kg/m3

Elastic properties

C11 � C22 � 31:55

C33 � 20:0

C55 � C66 � 4:63 E � 17:0 E � 6:03 GPa

C12 � 15:86 m � 0:3 m � 0:34

C23 � C31 � 9:75

Yield function

a44 � 0:2 ± ±

a66 � 1:0

Plastic ¯ow properties

For �Ep
0 6 0:72%: ry � 10:0� 106 ry � 190:0� 106 Pa

A � 3:55� 10ÿ28 n � 3:28 ��p
0 � 5:882� 10ÿ4 ��p

0 � 3:2� 10ÿ2

For �Ep
0 > 0:72%: n � 3:0 n � 5:0

A � 3:55� 10ÿ55 n � 6:78

_�Ep

0 � 1:0� 10ÿ3 _��p
0 � 1000:0 _��p

0 � 1000:0

m � 100:0 m � 3:0 m � 100:0

S33 � �C33E33�=�1ÿ a0E2
33� P � A1l� B1l2 � C1l3 P � A2j� B2j2 � C2j3 GPa

E336 0:0 l � �q=q0� ÿ 1 j � 1ÿ �q0=q�
A1 � 8:61 A2 � 6:20

a0 � 3:3 B1 � 21:14 B2 � 29:50

C1 � 44:21 C2 � 13:40
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interfaces are numbered in increasing order towards the free surface of the sample GRP plate. The
properties of different materials used in the analyses are given in Table 4.

The impactor and target plates are spatially discretized into 6-noded quadratic triangular elements.
The width of the material strip is so chosen that discretization results into squares, each square consisting
of two triangular elements. Each material layer, i.e., matrix, GRP and PMMA, are discretized into a
number of squares along the thickness. The discretization along the width of the strip is carried out in
two ways. In mesh type I, the total strip width l is taken as one column of square. In mesh type II, the
strip width is discretized into six columns of squares. The 4-noded zero thickness interface elements are
embedded between lamina by establishing one to one correspondence between surface nodes of the two
pairing laminas. One sample mesh at the section A of Fig. 11 and interface elements at the three types of
interfaces are shown in Figs. 12±14. The mesh details of types I and II used in the analyses are sum-
marized in Table 5.

Data available in the literature are scarce to ®x the value of all the parameters of interface cohesive
laws. The value of maximum normal traction, smax, of 50 MPa [18] is used in all the analyses. The
available literature suggest that mode I critical strain energy release rate of composite materials varies in
the range 200±2000 J/m2. Taking GIc as 200 J/m2, the value of critical displacement jump for the three
interface laws are obtained as 7.1, 8.0 and 4.003 lm. Analyses are carried out for the two values of GIc as
200 and 2000 J/m2 and four values of coupling parameter a as 2.5, 1.0, 0.5 and 0.1. Keeping smax as 50
MPa, the critical displacement jump is varied for matching the critical strain energy release rate. The
summary of various analyses carried out is given in Table 6. Analyses have been carried out till 10 ls for
Experiment 1 and till 5 ls for Experiments 2 and 3 in all the cases, except for two cases as shown in the
table.

Fig. 14. Interface elements at wavy II interface.Fig. 13. Interface elements at wavy I interface.

Fig. 11. Sample mesh at section A. Fig. 12. Interface elements at ¯at interface.
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Results are compared in terms of the axial velocity at the center of the back of the target/back plate (free
surface velocity), interface normal and shear stresses, displacement jump, and event of delamination, i.e.,
order and time of delamination. The normal and shear stresses considered for comparison are the average
stresses at the centroid of a representative interface element at a given interface, resolved along the local
normal and tangential directions, respectively. Two types of stresses, normal as well as shear, are considered
for illustration. One is the interface stresses obtained in the local coordinates directly from the interface
cohesive laws. The second one is obtained by extrapolating the Cauchy's stresses from the three integration
points of the neighboring 6-noded triangular elements to the centroid of the interface elements. Stresses are
®rst extrapolated from the integration points to the nodes of triangular elements. The continuum stresses,
so obtained, at the nodes of interface elements are interpolated at the centroid of interface elements. The
Cauchy's stresses so obtained are transformed to the local coordinates of interface elements to obtain the
average normal and shear traction at the centroid.

Table 6

Summary of analyses

Experiment Analysis Plate material Mesh no. Interface details (Tmax � 50 MPa) Analysis

time ls
Type Law dc (lm) a

1VL1 Layered 1 Flat I 7.1 0.5 10

1VL2 Layered 2 Flat I 7.1 0.5 10

1 1VL3 Layered 3 Flat I 7.1 0.5 10

1VL4 Layered 4 Flat I 7.1 0.5 10

1VL5 GRP 3 Flat I 7.1 0.5 10

2 2VL1 Layered 5 Flat I 7.1 0.5 5

2DC Layered 5 Flat I 71.0 0.5 5

3VL1 Layered 6 Flat I 7.1 0.5 5

3DC Layered 6 Flat I 71.0 0.5 5

3AL1 Layered 7 Flat I 7.1 2.5 5

3AL2 Layered 7 Flat I 7.1 1.0 5

3AL3 Layered 7 Flat I 7.1 0.5 5

3 3AL4 Layered 7 Flat I 7.1 0.1 5

3IW1 Layered 7 Wavy I I 7.1 0.1 5

3IW2 Layered 7 Wavy II I 7.1 0.1 5

3IT1 Layered 7 Wavy II I 8.0 0.1 5

3IT2 Layered 7 Wavy I I 8.0 0.1 5

3IT3 Layered 7 Wavy II I 8.0 0.1 5

3IC1 Layered 7 Wavy II I 4.003 0.1 5

3IC2 Layered 7 Wavy I I 4.003 0.1 5

3IC3 Layered 7 Wavy II I 4.003 0.1 5

Table 5

Di�erent types of ®nite element mesh used in analyses

Mesh details

Type No. Plate width

(mm)

Width divisions Element layers

in 1 laminate

Number of

nodes

Number of

elements

I 1 0.0532 1 12 2046 654

I 2 0.0320 1 20 3354 1090

I 3 0.0160 1 40 6624 2180

II 4 0.1915 6 20 14,534 6540

I 5 0.0163 1 40 3276 1080

I 6 0.0163 1 40 1818 600

II 7 0.0979 6 40 7878 3600
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5. Numerical results

The results obtained from various analyses are given below in terms of the validation and e�ect of
various interface parameters on the dynamic delamination in woven composite.

5.1. Validation with experiment data

Analyses for Experiment 1 have been carried out with interface law I and four di�erent mesh sizes and
results obtained are compared with experimental data. The layered con®guration has been analyzed with
meshes 1, 2 and 3 of type I, and mesh 4 of type II, as given in Table 5. The ®rst three meshes consist of a
total of 12, 20 and 40 layers of elements, while mesh 4 consists of 20 layers of elements in one lamina
thickness. Analysis has also been carried out with mesh 3 and considering full lamina thickness of the plates
to be of GRP. The free surface velocity obtained by analyses are compared with the experimental data in
Fig. 15.

It is found that the non-layered, only GRP, model predicts almost an elastic response without any
signi®cant attenuation of free surface velocity. Shock wave reaches the free surface at 4.63 ls, at which
instant, the free surface velocity increases instantaneously to 85 m/s. After delamination, a maximum ve-
locity of 89 m/s is obtained due to wave re¯ection. In contrast, the experimental velocity pro®le shows the
maximum free surface velocity before and after delamination to be 68 m/s and 75 m/s, respectively. On the
other hand, the layered con®guration of GRP plates, analyzed with mesh types I and II, predicts the at-
tenuation of free surface velocity in con®rmation with the experiment. The mesh type I analyses predict the
arrival time of shock wave at free surface to be 4.7 ls. The maximum velocity before and after delamination
are obtained to be 77 and 70 m/s, respectively. The mesh type II predicts the arrival time to be 4.4 ls and
maximum velocities to be 76 and 63 m/s, respectively. Hence, it is observed that the layered model of GRP
composites predicts the attenuation of the free surface velocity in con®rmation with the experimental data.
However, it over predicts the maximum velocity by 11±13%.

In order to gain further insight into the models, Experiments 2 and 3 are analyzed with meshes 5 and 6,
respectively, of layered con®guration. The experimental value [37] of maximum free surface velocity before
delamination for the two experiments are 62 and 131.5 m/s, respectively. Based on the measurement time of
3±3.5 ls, they may be inferred to be the velocities before delamination. Fig. 16 shows the free surface
velocity obtained from the analyses. The maximum free surface velocity for the two experiments are ob-
tained as 62 and 129 m/s which are in a very close agreement with the experimental values. Similarly, as
discussed later, the maximum value of stress obtained by these analyses are in a very close agreement with
the experimental values. Also, based on the arrival time of the shock wave at the free surface, a wave
velocity of 3200 and 3021 m/s is obtained from the analyses. These are in good agreement with the ex-
perimental value of 3090±3290 m/s. These results show that the layered con®guration of GRP composites
predicts the impact response in a better agreement with the experiments, as compared to the only GRP
composition.

Using an average wave speed of 3190 m/s, it can be calculated from the x±t diagram, for a homogeneous
medium, that the delamination plane for Experiment 1 lies in the 7th lamina with delamination time of
about 5.3 ls. According to this, delamination should take place either at the 6th or 7th interface. The
analyses, with layered composition and mesh type I, predict the delamination of interfaces 7, 8 and 6 at
7.31, 7.38 and 7.41 ls, respectively. When the layered composition is analyzed with mesh type II, the
delamination sequence remains the same, i.e., at interface 7, 8 and 6. Interface 9 delaminates, additionally in
this case, towards the end of the calculation. The four interfaces delaminate at 6.91, 7.03, 7.06 and 9.5 ls,
respectively. On the other hand, the analysis with non-layered, only GRP, composition predicts the del-
amination of interfaces 6 and 7 at 5.89 and 5.97 ls, respectively. It may seem that non-layered composition
predicts delamination location as well as time in better agreement with the theoretical values. However, the
corresponding velocity pro®le does not suggest this to be the case. In contrast to metals and ceramics, the
x-t diagram for a homogeneous medium can provide, only, a rough estimate. The dispersion of wave in-
dicated by the velocity attenuation will delay the delamination event making it more progressive instead of
sudden.
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Fig. 15. Validation of free surface velocity for Experiment 1.

Fig. 17. Extrapolated normal stress for Experiment 1. Fig. 18. Attenuation of tensile stress during delamination.

Fig. 16. Validation of free surface velocity for Experiments

2 and 3.

Fig. 20. E�ect of dc on free surface velocity for Experiments 3.Fig. 19. E�ect of dc on free surface velocity for Experiments 2.
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Fig. 17 shows the variation of extrapolated normal stress at interface 7 obtained from the above analyses
for experiment 1. The layered composition gives maximum compressive stresses of 216 and 202 MPa with
mesh types I and II, respectively. The maximum tensile stress is obtained to be 56 and 50 MPa in the two
cases. The non-layered, only GRP, composition gives the maximum compressive and tensile stresses of 283
and 50 MPa, respectively. It is not possible to validate these values due to unavailability of experimental
data. However, in the case of experiments 2 and 3, the layered composition predicts maximum compressive
stress to be 198 and 378 MPa, which are in a close agreement with the experimental values of 194 and 374
MPa, respectively. It is seen from the ®gure that, in the case of layered composition, the stress unloads from
the compressive state gradually and attenuates to the maximum tensile value. This is in con®rmation with
the phenomena of wave dispersion and scattering in composite materials. On the contrary, there is a sudden
reversal of stress from compressive to tensile in the case of non layered composition. These observation
further suggests that, compared with the non-layered homogenized model, the layered model for GRP
composites predicts the response in better agreement with the experiments by capturing the inherent
characteristics of wave dispersion. Fig. 18 shows the history of the tensile stress obtained from extrapo-
lation, as mentioned above, and from the interface cohesive law during delamination. As the tensile stress
wave reaches the interface, the displacement jump starts increasing. Both stresses attain their maximum
value at the critical displacement jump of 1=3. Beyond that, the stress starts reducing due to release of strain
energy. The stress value comes down to zero at the maximum e�ective displacement jump of unity, at which
moment the delamination is said to have taken place.

The above analyses show that the predicted response is independent of the three mesh sizes considered.
Meshes 1, 2 and 3 of type I have a total of 12, 20 and 40 layers of elements in each lamina. Fig. 15 shows
that the velocity pro®les obtained are almost independent of the mesh size. Similarly, the stresses are also
found to be independent of the mesh size as seen from Fig. 17. However, few di�erences are observed in the
results obtained from mesh types I and II. When the number of elements in the width of analysis strip is
increased from 1 to 6, the maximum velocity before delamination reduces from 77 to 76 m/s and the
maximum compressive stress reduces from 216 to 202 MPa. Similarly, the arrival time of shock wave at the
free surface reduces from 4.7 to 4.4 ls. These may be due to the increased contribution, and resulting
dispersion, by local shear stresses allowed in the mesh. However, the contribution may be small as evident
from the marginal reduction in the response parameters.

Based on the above results and observations, only the layered composition of the composite material is
considered for studying the dynamic delamination behavior. In the rest of the analyses, a total of 40 layers
of elements through the thickness of each lamina is considered for mesh types I and II. Only experiments 2
and 3 are analyzed further to investigate the e�ect of various interface parameters. The ®rst parameter to be
considered is the critical displacement jump at the interface whose analyses are given below.

5.2. E�ect of critical displacement jump dc

Using interface law I, Experiments 2 and 3 are analyzed to study the e�ect of the critical displacement
jump parameter dc for the ¯at interface between laminas. Keeping smax as 50 MPa, dc is varied as 7.1 and
71.0 lm corresponding to the two values of critical strain energy release rate GIc as 200 and 2000 J/m2,
respectively. The value of the mixed mode coupling parameter a is kept as 0.5 in all the analyses.

Figs. 19 and 20 show the variation of free surface velocity obtained by analyses of the two experiments.
These variations, and variations in free surface velocity observed in the preceding section, may be explained
with the help of Figs. 21 and 22. Fig. 21 shows the time variation of extrapolated normal stress at the four
interfaces of experiment 3 for the case of dc � 7:1 lm. It is seen from the ®gure that the compressive shock
stress starts from the impact plane in the form of a discontinuous stress jumps. However, it attenuates and
its magnitude reduces as it propagates along the thickness of the layered composite plate. These phenomena
are in con®rmation with the scattering and dispersion of stress wave observed experimentally. The in-
creasing order of dispersion, as the shock front propagates, is detected by the increasing rise time. The rise
time at the four interfaces is obtained as 0.35, 0.37, 0.41 and 0.44 ls, respectively. The maximum com-
pressive stress obtained at the four interfaces are 390, 381, 378 and 362 MPa, respectively. The reduction in
the duration of compressive pulse, at the fourth interface is in agreement with the general theory of wave
propagation.
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As seen in Fig. 21, a small reduction in compressive stress and re-acceleration is observed at the ®rst
three interfaces during the compressive pulse. For example, stress at interface 1 reduces from 390 MPa at
0.55 ls to 353 MPa at 0.76 ls, increasing again to a value of 385 MPa at 1.0 ls. It further reduces to a value
of 356 MPa at 1.23 ls. This phenomena may be due to the partial re¯ection of stress wave from interfaces
as it propagates along the specimen thickness. The time taken by the stress wave to travel through one
lamina varies in the range 0.2±0.22 ls based on the wave velocity of 3021±3290 m/s. The tensile stress
partially re¯ected from interfaces 2 and 3 will arrive at interface 1 at a time interval of 0.4±0.44 ls. The
phenomena marked by the two successive reduction in stress are predicted at a time interval of 0.47 ls, i.e.,
�1:23ÿ 0:76� ls, which is in a good agreement with the theoretical value. Similar phenomena is observed at
interfaces 2 and 3. However, due to re¯ection from interface 4 only, stress reduction at interface 3 takes
place only once. For the same reason, no reduction in compressive stress is observed at interface 4 during
the compressive pulse.

Based on the average wave velocity of 2799 and 3200 m/s in PMMA and GRP materials, the delam-
ination plane can be estimated from the x±t diagram to lie in the third lamina at a distance of 1.43 mm from
the impact plane. This suggests that the delamination should take place at interface 3 or 2. The analysis
predicts the delamination of interfaces 3 and 2 at 1.97 and 2.03 ls, respectively. Stress at interfaces 2 and 3
reduces to zero after delamination. But, the reverberation at interfaces 1 and 4 can be observed from the
®gure which leads to the kind of velocity variation obtained by the analyses.

Fig. 22 shows the variation of the free surface velocity and the normal stress at interface 4. The variation
of stress at interface 4 is the direct re¯ection of events at the free surface, at a time interval of approximately
0.2 ls later. Hence, the stress is plotted in the ®gure by shifting its time scale by a magnitude of 0.2 ls. It is
seen from the ®gure that as the compressive stress attenuates, the velocity also attenuates to a value of
124 m/s at 1.65 ls. When the compressive stress is re¯ected as tensile stress from the free surface, the
velocity at the free surface should remain constant. However, the re¯ected tensile stress will be partially
re¯ected by interface 4 as a compressive stress. As this compressive stress reaches the free surface, the free
surface velocity will again increase. This is shown in the ®gure by attenuation of the tensile stress at in-
terface 4 followed by an increase of free surface velocity to 129 m/s at 2.1 ls.

The release wave re¯ected from the back of the impactor plate will reach the free surface of the target
plate at approximately 2.16 ls. As this release wave reaches the sample free surface, its velocity will start
decreasing. This is predicted by the analysis as seen in the ®gure. The free surface velocity starts reducing at
2.2 ls. However, a release stress wave is generated at interface 3 at 1.97 ls due to delamination and arrives
at the free surface at 2.35 ls. As a result, the velocity starts increasing and attenuates to a value of 119 m/s
at 2.53 ls. This increase of 10.8 m/s in the velocity is referred as the pull back velocity. At this instant, there
are two stress pulses at each end of the detached two-laminate plate. At the free surface is the release wave
generated prior to delamination. Its magnitude will be large compared to the delamination stress of 50
MPa. Near the newly created surface, after delamination, is the stress wave which was generated due to
dynamic tensile failure. This stress pulse will be of about 50 MPa. The subsequent variation in the free
surface velocity is observed due to the reverberation of these two waves during which the maximum free
surface velocity is obtained as 136 m/s.

Going back to the e�ect of dc on the free surface velocity, Fig. 19 shows the free surface velocity for
experiment 2 obtained with two values of dc. In this experiment for dc � 7:1 lm, the 9th interface (2nd from
the free surface) delaminates at 3.76 ls. No delamination is predicted when dc is increased to 71.0 lm. This
is evident in the variation of free surface velocity. The maximum velocity before and after delamination for
dc � 7:1 lm are obtained as 62 and 59 m/s. The pull back velocity is predicted to be 11 m/s. For
dc � 71:0 lm, the maximum velocity before delamination remains the same as 62 m/s. However, after the
tensile stress wave re¯ected from the back of the impactor reaches the free surface of the sample plate, the
free surface velocity progressively reduces showing no pull back velocity, or in other words, the velocity
history does not show the reverberation discussed in the previous paragraph. It is observed that the
maximum velocity obtained by the analyses is the same as obtained experimentally. However, the predicted
pull back velocity of 11 m/s is very low compared to the experimental value of 47 m/s [18]. The variation of
normal stress at interface 9 calculated from the interface law is shown in the Fig. 23 together with the
variation of the displacement jump. It is observed that, apart from preventing delamination, an increase in
dc (i.e., increase in strain energy release rate) reduces the rate of interface loading. For the higher value of
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the parameter, the interface normal stress does not reach its maximum value of 50 MPa. The displacement
jump also remains below the critical value of 1=3 indicating no irreversible damage of the interface.

Similar phenomena is observed in the case of experiment 3. As given above, for dc � 7:1 lm, analyses
predict delamination of interfaces 3 and 2 at 1.97 and 2.03 ls, respectively. When dc is increased to 71.0 lm,
only the interface 3 delaminates at 3.15 ls. Fig. 20 shows that the maximum velocity before delamination is
129 m/s for both values of dc. The maximum velocity after delamination is 136 m/s for the lower value and
128 m/s for the higher value of dc. The pull back velocity for the two values of dc are obtained as 10.8 and
37 m/s, respectively. Fig. 24 shows the variation of normal stress at interface 3 obtained by extrapolation
and from the interface law. The maximum compressive stress at the interface is 378 MPa for both values of
dc. As the material delaminates, for both values of dc, the interface tensile stress increases to the maximum
value of 50 MPa. A slightly higher value of 57 MPa is obtained for the extrapolated tensile stress. For this
experiment too, it is observed that the rate of loading of interface in tension reduces as the critical strain
energy release rate increases. The variation in displacement jump shown in Fig. 25 also shows a slow rate of
loading of the interface with higher value of dc. However, as seen from the variation of kÿ sn in Fig. 25, the
interface loads under tension monotonously for both values of the parameters till delamination takes place.

The variation of normal stress and displacement jump, at interface 2 in the case of experiment 3, is
shown in Figs. 26 and 27, respectively. This interface is subjected to the maximum compressive stress of
381 MPa for both values of dc. The tensile stress also reaches the maximum value of 50 MPa in both the
cases. However, for the value of dc � 71:0 lm, the interface unloads irreversibly before full delamination as
seen from Fig. 27. Thus, interface 2 sustains partial damage when the tensile stress wave arrives, but
complete delamination does not take place.

The above simulations show that results obtained numerically are in better agreement with the exper-
imental results for the value of dc � 7:1 lm. In the case of experiment 2, the free surface velocity is pre-
dicted to be same as found experimentally. The maximum compressive stress at interfaces are found to vary
from 198 MPa at interface 1±175 MPa at interface 9, which are in close agreement with the experimental
value of 194 MPa [18]. Similarly, the maximum free surface velocity, pull back velocity and maximum stress
in the case of experiment 3 are predicted in close agreement with the experimental values for the lower value
of dc. However, in the case of experiment 2, the analysis predicts a pull back velocity of 11 m/s as against the
experimental value of 47 m/s. This discrepancy may be attributed to experimental error or error in nu-
merical modeling. Based on these results, it may be assumed that the critical strain energy release rate of the
GRP material is closer to the value of 200 J/m2. Hence, the value of dc � 7:1 lm is chosen for all the
analyses. Owing to the experimental ®nding of reduced spall strength for Experiment 3, further analyses are
carried out only for this experiment as given below.

5.3. E�ect of mode mixity parameter a

Analyses with interface law I are carried out to study the e�ect of mixed mode coupling parameter a.
Experiment 3 is analyzed with four values of a as 2.5, 1.0, 0.5 and 0.1 keeping smax as 50.0 MPa and dc as
7.1 lm. Hence, in the four analyses, the value of mode I critical strain energy release rate GIc is 200 J/m2.
The value of mode II critical strain energy release rate GIIc varies as 500, 200, 100 and 20 J/m2. This implies,
in turn, that the maximum traction for mode II crack, in the absence of mode I loading, is varied as 125, 50,
25 and 5 MPa, respectively. Impactor and sample plates with ¯at interfaces are discretized with mesh 7 of
type II.

Fig. 28 shows the variation of free surface velocity obtained by analyses with the four values of a. It is
found that the coupling parameter a does not have signi®cant e�ect on the free surface velocity. The
maximum velocity of 136 m/s and pull back velocity of 10.8 m/s are obtained in all the four cases. These are
the same as obtained with mesh type I, as discussed earlier, in which shear deformation allowed was
minimal. Similarly, the parameter a is found not to have signi®cant e�ect on the delamination sequence. In
all the four cases, interface 3 fails at 1.86 ls followed by interface 2 at 1.92 ls. Fig. 29 shows the predicted
variation of extrapolated normal stress at interface 3. A maximum compressive stress of 354 MPa and the
tensile stress of 50.5 MPa at delamination are predicted in all the cases. A similar result is observed on the
variation of normal stress calculated by the interface law. Fig. 30 shows the variation of the normal stress
and displacement jump k during delamination at interface 3. The tensile stress rises to its maximum value of
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Fig. 26. E�ect of dc on normal stress at interface 2 of Experi-

ment 3.

Fig. 23. E�ect of dc on normal stress and displacement jump

for Experiment 2.

Fig. 24. E�ect of dc on normal stress at interface 3 of Experi-

ment 3.

Fig. 25. E�ect of dc on displacement jump at interface 3 of

Experiment 3.

Fig. 22. Free surface velocity with reference to stress wave

propagation.
Fig. 21. Interface stresses and delaminations for Experiment 3.
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50.0 MPa at the critical displacement jump of 1=3 and then reduces to zero at delamination. The dis-
placement jump rises monotonously to the value of unity at delamination. Thus, the four analyses show
that the delamination in the composite plate takes place primarily in mode I for these cases, in which in-
terface waviness is not present.

However, Fig. 31 shows the variation of tangential traction at interface 3 predicted from the interface
law within the duration of the compressive pulse. The variation of the displacement jump in this time period
is also shown in the ®gure. The ®gure shows the presence of shear stresses before delamination, though their
magnitude are very small. The maximum shear stresses of 0.4, 0.2, 0.1 and 0.02 MPa are predicted for the
four values of a considered in the analyses. It is seen that, before the tensile stress wave arrives at the
interface, the shear stress starts reducing. Beyond the critical value of 1=3 for k, the maximum shear stress is
obtained to be 0.12 MPa for a � 2:5. A similar e�ect of a have been observed on the extrapolated shear
stress at the interface.

The presence of shear stress, so predicted, indicates that there may be a possibility that the interface
shear traction has a contribution in the delamination process. If so, it may be able to explain the absence of
spall strength in Experiment 3 as obtained experimentally [18]. But, the above analyses show that the
coupling parameter a, in the absence of waviness, does not have a pronounced e�ect in the case of ¯at
interface between laminas. On the other hand, ongoing experiments show that the strength of the woven
GRP composite in pure shear may not be more than 5.0 MPa [41]. This suggests that the value of a � 0:1
may be the most appropriate corresponding to the maximum normal traction of 50.0 MPa. This value has
been used in all the subsequent analyses. Since, the layered composition of the GRP composite with ¯at
interface analyzed above for a � 0:1 does not show any signi®cant local shear stress e�ect, the additional
possibility for an enhanced local shearing e�ect is explored by introducing waviness at the interface as given
below.

5.4. E�ect of interface waviness

Analyses are carried out to study the e�ect of interface waviness between laminas. Experiment 3 is
analyzed for the two types of waviness, as explained earlier, using the interface law I. The values of interface
parameters smax, dc and a considered in the analyses are 50.0 MPa, 7.1 lm and 0.1, respectively. Impactor
and the GRP sample plate are discretized using mesh 7 of type II.

Fig. 32 shows the variation of free surface velocity obtained by analyses with the two wavy interfaces.
The free surface velocity, discussed above, for the ¯at interface is also shown in the ®gure. The maximum
velocity before delamination is obtained as 129 m/s, which is same as obtained with the ¯at interface. There
is a negligible increase in the maximum velocity after delamination, which are obtained as 136.8 and 136.9
m/s for wavy I and wavy II interfaces, respectively, as against 136 m/s obtained for the ¯at interface. The
event of delamination in the case of wavy interfaces also remains approximately the same as obtained for
the ¯at interface, i.e., interface 3 fails at 1.86 ls and interface 2 fails at 1.92 ls. However, wavy I and wavy II
interfaces predict reduced pull back velocity of 9.2 and 9.36 m/s, respectively, as against 10.8 m/s predicted
in the case of ¯at interface. This reduced pull back velocity indicates some e�ect of interface waviness on the
delamination process, when the interface law I is used.

Fig. 33 shows the variation of extrapolated normal stress at interface 3 for the three types of interface
considered. As seen in the zoomed sections A and B, the maximum compressive stress of 350 MPa is
obtained with both the wavy interfaces as opposed to the maximum of 354 MPa obtained with the ¯at
interface. The maximum extrapolated tensile stress at delamination reduces to 45.0 and 43.5 MPa for wavy
I and wavy II interfaces, respectively, from a value of 50.5 MPa in the case of ¯at interface. Fig. 34 shows
the variation of the normal stress and displacement jump obtained from the interface law. The maximum
interface normal stress, at critical displacement jump of 1=3, reduces to 49.0 MPa for the wavy interfaces
from a value of 50 MPa in the case of ¯at interface. The reduction in the normal delamination stress of the
interface obtained from both the procedures indicate a degree of coupling between normal and shear stress
due to waviness, implying a mixed mode of delamination.

This coupling is shown in Fig. 35 for the variation of shear stress at interface 3 obtained from the in-
terface law. It is observed that the magnitude of shear stress increases during the compressive pulse with the
introduction of waviness at the interface. The maximum shear stress at interface 3 during compression is
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Fig. 27. E�ect of dc on displacement jump at interface 2 of

Experiment 3.

Fig. 28. E�ect of a on the free surface velocity.

Fig. 29. E�ect of a on the extrapolated normal stress at inter-

face 3.

Fig. 30. E�ect of a on the interface normal traction and dis-

placement jump.

Fig. 31. E�ect of a on the interface shear traction. Fig. 32. E�ect of waviness on the free surface velocity.
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Fig. 36. Free surface velocity for ¯at interface using di�erent

interface laws.

Fig. 37. Extrapolated normal stress for ¯at interface using

di�erent interface laws.

Fig. 38. Interface normal traction and displacement jump for

¯at interface 3 using di�erent interface laws.

Fig. 35. E�ect of waviness on the interface shear traction.

Fig. 33. E�ect of waviness on the extrapolated normal stress at

interface 3.

Fig. 34. E�ect of waviness on the interface normal traction and

displacement jump.
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found to be 0.02, 0.1 and 0.17 MPa for the ¯at, wavy I and wavy II interfaces, respectively. The corre-
sponding displacement jump are obtained to be 0.0007, 0.003 and 0.005 lm. Although, these values are
small, an increase of over 4 times in the case of wavy I and an increase of over 8 times in the case of wavy II
interface compared with the value for ¯at interface is worth noting. The ®gure shows that displacement
jump and shear stress rise gradually during compression in the case of ¯at interface. But, in the case of the
two wavy interfaces, they attain the maximum sharply, remain approximately constant thereafter and then
reduce to zero before the tensile stress wave arrives at the interface. During delamination, the contribution
of shear stress is negligible in the case of ¯at interface. However, wavy I and II interfaces induce shear stress
of 1.05 and 1.07 MPa, respectively, with the change in sign. This presence of shear stress during delam-
ination signi®es the coupling and the mixed mode delamination, which reduces the normal delamination
stress by 1 MPa.

Hence, the above analyses show that the interface waviness introduces a degree of coupling of mode I
and mode II failure during delamination. It is observed that the displacement jump for mode II, i.e., shear
loading during compression is smaller than the critical displacement jump of 1=3. As a result, when the
shear state of the interface unloads before delamination, it takes place reversibly, implying that there is no
residual damage to the interface before delamination. This may be the reason that there is a small reduction
in the pull back velocity predicted with the two wavy interfaces. It is found that the wavy II interface
predicts more coupling than the wavy I, but it has more pull back velocity as compared to the wavy I
interface. This contradiction may suggest that such small coupling may not be enough to clearly show its
e�ect on the pull back velocity, which structure is di�cult to interpret per se in the case of heterogeneous
materials like GRP composites. In order to study the phenomena more in detail, further analyses are
carried out with two proposed interface laws as given below.

5.5. E�ect of interface laws

In order to further investigate the mixed mode delamination and loss of spall strength during com-
pression, analyses are carried out using the interface laws II and III. Experiment 3 is analyzed with ¯at as
well as the two wavy interfaces. The interface parameters in all the analyses are kept the same as mentioned
in the preceding section (i.e., smax � 50 MPa, dc � 7:1 lm and a � 0:1). Results obtained with the two
interface laws are compared together with the results discussed above for interface law I.

The variation of free surface velocity, extrapolated normal stress at interface 3, normal stress at the same
interface obtained from interface laws and the shear stress at the interface obtained by analyses with ¯at
interface are shown in Figs. 36±39. It is found that the maximum velocity before and after delamination
remains approximately same as 129 m/s and 136 m/s. The last two interface laws predict pull back velocity
of 9.8 m/s in place of 10.8 m/s which is also predicted by the ®rst interface law. It is observed from Fig. 37
that the three laws predict approximately same peak compressive stress of 354 MPa. The delamination
history also remains the same as discussed above, i.e., interface 3 fails ®rst followed by interface 2. As
mentioned earlier, interface law I predicts their delamination at 1.86 and 1.92 ls, respectively. Interface law
II predicts their delamination at 1.88 and 1.94 ls while the law III predicts delamination at 1.83 and 1.88 ls.
When the interface is loaded in tension, the tensile stress rises to the maximum value of 50 MPa. There is
sharp rise in the tensile stress predicted by the last two laws, while the rise time is signi®cantly increased in
the case of law I. This may be due to the higher sti�ness built into the law II and III functions with
kc � 0:001. Fig. 38 also shows the variation of displacement jump during delamination. The tensile stress
increases to the maximum value at the kc for the respective interface laws. It then reduces to zero gradually
in the case of laws I and II, whereas, in the case of law III, the stress remains constant at the maximum
value and then reduces sharply to zero at the time of full delamination.

Fig. 39 shows the variation of shear stress at the ¯at interface 3. The variation of k in the ®gure shows
that the displacement jump during the compressive pulse remains well below the critical value kc for all the
three laws. Interface laws II and III predict a higher shear stress of about 0.7 MPa compared to 0.02 MPa
predicted by the ®rst law. The interface shear stress unloads before delamination. However, in the case of
the last two laws, the shear stress increases during the delamination process. This rise is not appreciable in
the case of law II, but law III predicts the interfacial shear stress of 1.8 MPa during delamination. As seen
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in the Fig. 37, this small coupling value causes the normal stress to reduce by approximately 1 MPa, instead
of remaining constant, towards the end of delamination.

The above results show that in the case of a ¯at interface between laminas, the three interface laws
predict overall similar delamination mode, i.e., the delamination takes place predominantly in mode I under
the in¯uence of the normal tensile stress. As the critical strain energy release rate in all the three laws is kept
constant, i.e., 200 J/m2, the delayed delamination predicted by law II and early delamination predicted by
law III may only be due to the di�erence in the critical displacement jump. As given in the Table 6, the
critical displacement for law II is 8 lm releasing the energy linearly and for law III is 4.003 lm releasing the
energy suddenly to zero at the instant of delamination. This may suggest that the delamination time is
controlled by the manner in which the material releases the energy during delamination. Also, the pull back
velocity of 9.8 m/s, which is in closer agreement with the experimental value of 10 m/s [18], shows that the
higher sti�ness provided in the last two laws may be more realistic. These behavior in the presence of mixed
mode delamination are studied with the help of the wavy interfaces as given below.

Results obtained with the wavy I interface using the three interface laws are given in Figs. 40±43. Figs.
40 and 41 show that the three laws predict the same maximum free surface velocity before delamination
and maximum compressive stress as 129 m/s and 350 MPa, respectively. The maximum velocity after
delamination predicted by the three laws are 136.8, 133 and 135 m/s, respectively. The order of del-
amination in the three cases remains the same in this case, i.e., interface 3 delaminates ®rst followed by
the delamination of interface 2. The delamination time predicted by law II is approximately the same as
in the case of law I, i.e., interface 3 delaminates at 1.86 ls and interface 2 delaminates at 1.91 ls.
However, law III predicts early delamination of interface 3 at 1.82 ls and at 1.87 ls for interface 2. The
three laws predict the pull back velocity to be 9.2, 8.0 and 7.6 m/s respectively. The normal stress
predicted during delamination by the three laws are 49, 13 and 35 MPa. As discussed earlier and ob-
served in Fig. 43, interface law I predicts a small shear stress of 0.1 MPa during the compressive pulse.
But, owing to their higher sti�ness, the shear stress in the case of laws II and III reaches the maximum
allowable value of 5 MPa. The k variation in the same ®gure shows that the e�ective displacement jump
remains larger than the critical displacement jump (kc � 0:001) during compression for the last two laws.
This implies that the interface gets partially damaged during compression. The interface unloads from the
shear state before delamination. However, its tensile strength has been reduced due to the partial damage
on account of irreversible unloading. All the three interface laws predict that delamination occurs under
mixed mode. The shear stress predicted during delamination by the three laws are 1.05, 4.5 and 3.3 MPa,
respectively. Hence, law I predicts the minimum coupling and law II predicts the maximum coupling of
modes I and II delamination.

Similar results are obtained for the analyses carried out with wavy II interface using the three laws. Figs.
44±47 show the results obtained by the analyses. In this case also, the maximum velocity before delam-
ination and maximum compressive stress, as seen in the Figs. 44 and 45, remain the same, i.e., 129 m/s and
350 MPa respectively. The maximum velocity after delamination is found to be 136.9, 134 and 134 m/s. The
order of delamination also remains the same as given above. The delamination time for interfaces 3 and 2
predicted by law I and II are the same as predicted with wavy I interface given in the preceding paragraph.
However, law III predicts delamination of interface 3 at 1.81 ls and of interface 2 at 1.86 ls. The pull back
velocity predicted by the three laws are 9.36, 8.0 and 6.0 m/s, respectively. Fig. 47 shows that law I predicts
a very small shear stress of 0.17 MPa during compression. However, interface shear stress reaches its
maximum value of 5 MPa in the case of last two laws. As in the case of wavy I interface, discussed above,
the partial damage to the interface during compression is obtained using the interface laws II and III. The
interface unloads from the shear state before delamination. However, due to partial damage, the maximum
interface normal stress at delamination are lower in the case of law II and III. As shown in Fig. 45, the
extrapolated value of the normal stress at interface 3 is obtained to be 43.5, 7.0 and 29.0 MPa with the three
laws. However, the last two interface laws predict enhanced mixed mode delamination. The interface shear
stress during delamination found with the three laws is 1.07, 4.7 and 3.4 MPa, respectively. This has a
re¯ection on the maximum normal stress at delamination. The maximum normal stress predicted with the
three laws is 49.0, 11.0 and 35.0 MPa, respectively. Hence, the interface laws II and III predict partial
damage to the interface during compressive loading and enhanced mixed mode delamination of the woven
composite material.
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Fig. 39. Interface shear traction for ¯at interface 3 using dif-

ferent interface laws.
Fig. 40. Free surface velocity for wavy I interface using dif-

ferent interface laws.

Fig. 41. Extrapolated normal stress for wavy I interface using

di�erent interface laws.

Fig. 42. Interface normal traction and displacement jump for

wavy I interface using di�erent interface laws.

Fig. 43. Interface shear traction for wavy I interface using

di�erent interface laws.

Fig. 44. Free surface velocity for wavy II interface using dif-

ferent interface laws.
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6. Conclusions

A detailed ®nite element model is presented for the analysis of dynamic delamination in ®ber reinforced
composite material. The analyses results show that the model predicts the response of composite material
under impact loading with most of its inherent characteristics. The analyses indicate that computational
homogenization of the material, attempted in the past, may not be a good assumption in the case of dy-
namic loading of heterogeneous material. The procedure does not capture the wave dispersion and scat-
tering by the various constituents. The intrinsic layered composition of composite materials considered in
the present analyses is one of the methods to simulate the e�ect. Shock attenuation as it propagates along
the thickness of the sample plate, reduction in its peak magnitude and unusually long rise times are all
present. Attenuation of the free surface velocity, as observed in the analyses, are the results of wave dis-
persion and scattering due to re¯ection by various layers and interfaces as discussed above. The dispersion
e�ect may become more pronounced if the inevitable presence of voids are considered in the analyses, which
has been neglected here. However, the model predicts the response in close agreement with the experimental
results, in terms of the free surface velocity as well as the peak stress values. One discrepancy in terms of
pull back velocity for experiment 2 has been found. In view of all the other results, a possible experimental
error in this case may not be neglected.

Fig. 46. Interface normal traction and displacement jump for

wavy II interface using di�erent interface laws.
Fig. 45. Extrapolated normal stress for wavy II interface using

di�erent interface laws.

Fig. 47. Interface shear traction for wavy II interface using di�erent interface laws.
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More importantly, the above analyses indicate the importance of detailed characterization of the
composite material under consideration. For example, only the dynamic delamination stress of the woven
composite material is available in the literature. Attempt has been made here to roughly tune the value of
strain energy release rate. It is expected that a composite material with higher value of strain energy release
rate will have higher interface strength resulting in fewer and delayed delamination. But, the present an-
alyses show that for the same interface strength, higher values of the strain energy release rate imply in-
terface loading at reduced rate, as well. This may be an important factor if the material is rate sensitive.
This indicates the necessity of establishing the delamination properties more in detail through experiments
and atomistic simulations.

The necessity is more apparent while modeling mixed mode delamination. It has been found experi-
mentally, as discussed earlier, that composite materials delaminate during compression due to local shear
e�ects. For this same reason, the presence of local shear during tension makes the mixed mode delamin-
ation inevitable. Data are scarce in the literature in this regards as to what will be the variation of the
interface normal and shear stress during delamination. Due to unavailability of data, the interface laws
have been so formulated here, such that delamination in mode I occurs at stress smax in the absence of mode
II, while it occurs at asmax in mode II, in the absence of mode I. smax is taken from the literature and a is so
selected that asmax matches the pure shear strength of the composite [41]. The equivalent traction for mixed
mode delamination varies in the range smax ÿ asmax. The procedure adopted is able to predict partial in-
terface damage during compression and reduced pull back velocity, which are in con®rmation with the
experimental results. However, the experimental con®rmation of the three laws is necessary for selecting the
most appropriate law with modi®cation, if any. This is more so in view of the e�ect of a as observed during
the analyses.

The analyses show that apart from the heterogeneity of composite materials, the waviness of the in-
terface between lamina is one of the major source of local shear stress. Waviness in the woven composite
considered in the present analyses is purposely provided. However, such waviness introduced during the
manufacturing process is a common feature of composite materials, as discussed earlier. Their modeling is
important for predicting the dynamic response of these materials. It is evident by the distinct response
predicted for wavy I and wavy II interfaces as discussed above.

The versatility of the ®nite element model obey a contact/interface approach for modeling dynamic
delamination is evident throughout the analyses. The insertion of interface elements right from the
beginning simpli®es the analyses to a great extent. The need for duplicating nodes and creating new
surface is circumvented in the process. As the interface elements fail, the new surface is automatically
generated whose analysis is carried out through the contact module. However, the interface cohesive
law to describe the constitutive response of the interface law is vital in this approach. When interface
elements are embedded in a continuous domain to take advantage of this feature, the interface law
needs to be such that the reversible response of the interface element is in con®rmation with the re-
sponse of the surrounding continuum, till the normal stress reaches its maximum value. In analytical
terms, the sti�ness of the interface element should be in tune with the continuum sti�ness till the at-
tainment of the maximum stress. The implication is evident from the analyses with the three laws. The
initial sti�ness employed in law I is far less than the sti�ness employed in laws II and III. As a result,
the law I fails to predict the partial damage of interface during compressive loading and the amount of
mode mixity predicted is negligible. On the other hand, laws II and III predict the two events pro-
nouncedly.

After the maximum stress is reached, the interface element opens up under tension releasing the strain
energy till the total delamination at critical displacement jump. The analyses show that it is important to
gain insight into the manner the strain energy is releases during the process. Laws II and III have same
initial sti�ness. However, the response predicted by them are very distinct. The only di�erence in the two
laws is that law II releases the interface traction linearly from the beginning, while law III releases it all of a
sudden at delamination. This di�erence may alter the mode in which various integration points attain the
maximum stress. In the case of wavy interface, release of normal traction at one integration point of the
interface element may cause the adjacent integration point to fail under shear, instead of tension. This
phenomenon is not observed through the results discussed above, because only the average quantities at the
centroid of the interface elements are plotted.
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At the end, the above analyses predict the partial damage of interfaces during compression which results
in reduced, but ®nite, delamination strength. This is achieved through the combined e�ect of layered
composition, interface waviness and modeling of interface cohesive laws. By contrast, the experimental
result shows a total loss of spall strength of the woven composite during compression. One reason for the
discrepancy may be that the response of the woven composite will necessarily be three dimensional, while
only two dimensional plane strain analyses have been carried out. The e�ect of various parameters under
three dimensional loading may be more pronounced to delaminate the composite during compression.
Also, the analyses show that it may be required to re-evaluate the concept of pull back velocity as a measure
of spall strength in the case of heterogeneous materials like GRP composites. It has been found above that
the pull back velocity is higher corresponding to a lower delamination stress. Overall, the model presented
here is able to provide signi®cant insight into the phenomenon of dynamic delamination and inelasticity of
composite materials.
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