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Abstract

Dynamic crack propagation in a unidirectional carbon/epoxy composite is studied through finite element analyses of

asymmetric impact (shear loading) of a rod against a rectangular plate. A finite deformation anisotropic visco-plastic

model is used to describe the constitutive response of the composite. Crack propagation is simulated by embedding zero

thickness interface element along the crack path. An irreversible mixed-mode cohesive law is used to describe the

evolution of interface tractions as a function of displacement jumps. Contact and friction behind the crack tip are

accounted for in the simulations. The failure of the first interface element at the pre-notch tip models onset of crack

extension. Crack propagation is modeled through consecutive failure of interface elements. The dynamic crack prop-

agation phenomenon is studied in terms of crack initiation time, crack speed, mode I and mode II displacement jumps

and tractions associated with the failure of interface elements, effective plastic strain at the crack tip and path inde-

pendent integral J 0. Analyses are carried out at impact velocities of 5, 10, 20, 30 and 40 m/s, assuming the crack wake is

frictionless. Moreover, analyses at impact velocities of 30 and 40 m/s are also carried out with a friction coefficient of

0.5, 1, 5 and 10 along the crack surfaces. The analyses show that steady-state intersonic crack propagation in fiber

reinforced composite materials occurs when the impact velocity exceeds a given threshold. A steady-state crack speed of

3.9 times the shear wave speed and 83% of the longitudinal wave speed is predicted in the cases in which the impact

velocity is above 10 m/s. Detailed discussion is given on the features of sub-sonic and intersonic crack propagation. It is

shown that friction effects, behind the crack tip, do not have a significant effect on maximum crack speed; however, they

do on characteristics of the shock wave trailing the crack tip. The analyses also show that the contour integral J 0,

computed at contours near the crack tip, is indeed path independent and can serve as a parameter for characterizing

intersonic crack propagation.
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1. Introduction

Dynamic crack propagation in materials has

remained an active area of research for decades. In

the past few years, the importance of this area has
re-emerged, primarily due to (a) greater emphasis

on multi-layered materials in strategic applica-

tions, (b) role of dynamic crack propagation in

determining the overall response and damage

mode of advanced materials, and (c) experimental

findings showing that the velocity of a dynamically

growing crack can exceed the shear wave speed of

the materials. It is this feature that has drawn
much attention in recent years.

There have been a number of experimental

measurements on initiation and dynamic propa-

gation of cracks along bimaterial interfaces, Tippur

and Rosakis (1991), Tippur et al. (1991), Rosakis

et al. (1991), Lambros and Rosakis (1995a,b,c),

Singh and Shukla (1996), Singh et al. (1997a), and

Kumar and Kishore (1998). In these experiments,

as shown in Fig. 1, half of the bimaterial specimen

is made of a metal, aluminum or steel, and the

other half is made of a more compliant material,

e.g., PMMA or Homalite. The specimen is asym-

metrically impact loaded and the crack propagates
dynamically under the influence of intense stress

waves. A number of important results have been

reported from these experiments. At an impact

velocity of less than 5 m/s, the extension and dy-

namic growth of the crack has been found to occur

predominantly in mode I. The maximum crack

speed, Vc, is observed to be 80% of the Rayleigh

wave speed, CR, of the more compliant material,
i.e., PMMA or Homalite. These crack speeds

Vc < Cs, where Cs is the shear wave speed of the
more compliant material, have been termed sub-

sonic crack speeds. At an impact velocity of more

than 20 m/s, crack extension and propagation takes

place in predominantly shear or mode II. For these

Fig. 1. Schematic of dynamic crack propagation experiment and intersonic crack propagation event reproduced from Singh et al.

(1997a).
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shear driven cracks, maximum speed of propaga-

tion has been found to be as high as 1.5Cs. These
crack speeds Cs < Vc < Cl, where Cl is the dila-
tional wave speed of the more compliant material,

have been termed intersonic crack speeds.

The intersonic crack propagation phenomenon,
along a bimaterial interface, was at first puzzling.

In fact, theory predicts that sustained mode I crack

propagation in homogeneous materials, at a speed

equal to the Rayleigh speed of the material, re-

quires an infinite amount of energy. Other inter-

esting observations were: (i) crack tip acceleration

in the intersonic region is reported to be as high as

107g, where g is the gravitational acceleration; (ii)
development of a contact zone and the formation

of lines of discontinuity (shock waves) behind in-

tersonically propagating cracks.

Analyses of these experimental records have

been carried out using analytical solutions of the

two dimensional, singular, elastic crack tip stress

fields problem, Rice et al. (1990), Wu (1991), Liu

et al. (1993), Liu et al. (1995), Ricci et al. (1997),
Singh et al. (1997b), and Kavaturu and Shukla

(1998). It has been shown that the ratio between

displacement along the crack and a direction nor-

mal to it, remains constant behind the dynamically

propagating crack. This ratio is less than unity (of

the order of 0.3) in the sub-sonic regime exhibiting

mode I cracking, whereas it is more than unity (of

the order of 3.0) in the intersonic regime exhibiting
mode II cracking. Furthermore, the strain energy

release rate decreases with the increase in crack

speed and approaches zero in the intersonic region.

The analyses have also confirmed the existence of a

contact zone and formation of a Mach zone behind

intersonically propagating cracks.

In spite of the these crucial findings, there are

some discrepancies in the experimental character-
ization of dynamic crack propagation. Experi-

mental studies by Tippur and Rosakis (1991),

Tippur et al. (1991), Rosakis et al. (1991), and

Lambros and Rosakis (1995a,b,c), did not estab-

lish a steady-state intersonic crack propagation.

Using a larger width of bimaterial specimen, Singh

et al. (1997a) showed that a steady-state intersonic

crack speed can be achieved. Similarly, according
to Lambros and Rosakis (1995a) and Liu et al.

(1995), there exists an unfavorable velocity regime,

Cs < Vc <
ffiffiffi
2

p
Cs, in which the crack growth is un-

stable and the crack quickly accelerates out of this

region. In contrast, Singh et al. (1997a) have

shown that stable crack growth indeed takes place

in this regime. Instead of strain energy release rate

reducing monotonously to zero as in Lambros and
Rosakis (1995a), Kavaturu and Shukla (1998)

have shown that it first increases with crack speed

and then, after attaining a maximum, it starts de-

creasing and approaches zero.

There are two obvious reasons for such dis-

crepancies. First, experimentation with a smaller

width of plates, Tippur and Rosakis (1991), Tip-

pur et al. (1991), Rosakis et al. (1991), and
Lambros and Rosakis (1995a,b,c), did not allow

intersonic crack propagation to reach the steady

state due to boundary effects. Second, the crack tip

stress field solutions used to derive the above

conclusions are based on the assumption that

stress fields are elastic, crack front extends infi-

nitely and crack faces are traction-free. In actual

experiments, some of these assumptions are not
met. Due to stress concentration, the crack tip is

always associated with an inelastic regime. The

interaction between reflected stress waves and dy-

namic crack fronts is unavoidable. Furthermore,

because of contact behind the crack the interson-

ically propagating crack wake is not free of trac-

tion. Additionally, there are frictional effects in the

contact zone which modify the crack tip stress
fields and its propagation characteristics. These

observations illustrate the complexity of the problem

and the need for detailed numerical studies.

There have been a number of computational

studies on bimaterial interface cracks, Shih and

Asaro (1990), Varias et al. (1990a, 1990b), Yang

et al. (1991), Nakamura et al. (1995), Xu and

Needleman (1995), Xu and Needleman (1996),
Siegmund et al. (1997), Kumar and Kishore

(1998), and Needleman and Rosakis (1999), to

mention a few. However, few analyses have been

conducted to study the intersonic crack propaga-

tion and the effect of various factors. Nakamura

et al. (1995) used the strain energy release rate as

the governing criteria for dynamic propagation of

cracks and found that the dynamic J 0 integral
approaches zero with the increase in crack veloc-

ity. Xu and Needleman (1996), and Needleman
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and Rosakis (1999), carried out an extensive para-

metric study with the help of assumed material

properties and obtained intersonic crack speeds

and a contact zone behind the propagating crack.

However, the interface cohesive elements used by

Xu and Needleman (1996), and Needleman and
Rosakis (1999), did not include frictional effects

after failure and creation of free surfaces. It should

be noted that in their model the dynamic J 0 inte-

gral does not decrease with increasing crack speed.

Recently, Rosakis et al. (1999) showed that in-

tersonic shear cracks also occur in homogeneous

materials in which a weak plane pre-determines the

path of the crack. They found that these shear
cracks accelerate towards a particular speed offfiffiffi
2

p
Cs, under steady-state conditions, as predicted

by theory. Likewise, a line of discontinuity or

shock wave develops at an angle of 45� with re-
spect to the plane of the crack. These findings il-

lustrate that intersonic crack propagation is

primarily related to the propagation mode and

that the phenomenon occurs as long as enough
energy is delivered to the crack tip.

In the case of unidirectional fiber composites, a

weak fracture plane typically develops at the inter-

face betweenmatrix and fibers. Furthermore, due to

material elastic anisotropy, wave speeds along the

fiber direction are very different to the wave speeds

in the perpendicular direction. Hence, it was ex-

pected that the intersonic crack phenomenon could
also occur in these materials as well. Experimental

studies on dynamic crack propagation in unidirec-

tional fiber composites were conducted by Zheng

and Sun (1995), Lambros andRosakis (1997), Stout

et al. (1998), and Coker and Rosakis (1998, 2001).

The work by Coker and Rosakis revealed that

asymmetrically loaded (mode II) cracks indeed

propagate intersonically at unprecedented speeds of
three times the composite shear wave speed and

almost the material longitudinal wave speed along

the fiber direction. Evidence of large scale frictional

contact was also reported. The same findings were

computationally predicted by Espinosa et al.

(1998a,b), see first page footnote.

Due to the importance of fiber composite ma-

terials in civilian and strategic defense applica-
tions, it is important to develop tools for detailed

finite element analyses of dynamic crack propa-

gation under impact loading. In particular, the

examination of conditions for intersonic crack

propagation need to be assessed. Likewise, the fol-

lowing features need further research: (1) thresh-

old impact energy above which intersonic crack

propagation is possible in unidirectional fiber
composites, (2) effects of plastic zone around the

crack tip, (3) formation of shock waves, (4) char-

acteristics of contact zone behind crack tip, (5)

effect of friction in the contact zone, and (6)

characterization of intersonic crack propagation in

terms of the dynamic J 0 integral.

To our knowledge, only a limited number of

analytical and computational studies, on the sub-
ject of dynamic crack propagation in fiber com-

posite materials, were reported in the literature.

Among these studies we can mention Huang et al.

(1999), Hwang and Geubelle (2000), Kumar and

Kishore (1998), Stout et al. (1998), Lo et al. (1993),

Sun and Qian (1997), Pandey and Sun (1996), and

Sun and Wu (1996). None of these studies included

frictional contact behind the crack tip. The present
work focuses on studying dynamic crack propa-

gation in unidirectional composites using a cohe-

sive surface formulation and a contact/friction

algorithm. Dynamic crack propagation in a unidi-

rectional graphite/epoxy composite plate is studied

using the finite deformation anisotropic visco-

plastic model, in total Lagrangian co-ordinates, of

Espinosa et al. (2001). The contact/interface
methodology of Espinosa et al. (1998b) is used to

analyze crack propagation. The model is first

validated with the analysis results of Xu and

Needleman (1996) for dynamic crack propagation

along a bimaterial interface. It is then used to

study dynamic crack propagation in unidirectional

graphite/epoxy composite plates under the influ-

ence of varying impact velocities and surface fric-
tion characteristics. The dynamic J 0 integral is

evaluated in each case to study the energy associ-

ated with the propagating crack tip.

2. Finite deformation anisotropic visco-plasticity

model

The simulation of the response of fiber com-

posite materials requires the formulation of large

484 S.K. Dwivedi, H.D. Espinosa / Mechanics of Materials 35 (2003) 481–509



deformation inelastic constitutive models. Identi-

fication of an appropriate yield function and the

plastic flow rule to describe the non-linear aniso-

tropic behavior of fiber composite materials is a

challenge in itself, see e.g., Sun and Chen (1989),

Espinosa et al. (1997), Chen et al. (1997), O�Don-
oghue et al. (1992), Voyiadjis and Thiagarajan

(1995) and Voyiadjis and Thiagarajan (1996), etc.

amongst others. Previously, the approach has been

to computationally homogenize the directional

properties of composite materials. This helps in

deriving a formulation applicable for such mate-

rials and in facilitating the implementation of a

finite element computer program. In contrast,
micromechanical models, Aboudi (1989), Paley

and Aboudi (1992) and Stout et al. (1998) treat the

matrix and fiber materials separately, and derive

the overall constitutive relation of a cell using pe-

riodicity and traction continuity at the boundary

of sub-cells. On one hand, homogenized constitu-

tive relations are simple to use in a finite element

code; however, their capability to simulate exten-
sive damage during impact and penetration re-

mains a topic of research. On the other hand,

micromechanical cell models can simulate a large

extent of damage modes, but they are highly

computer intensive. Modeling all the inherent

characteristics of fiber composite materials to de-

termine their response at high strain rates remains

a formidable challenge. Simplified models have
been sought to study selected behavior of these

materials, see for instance Lee and Sun (1992) and

Lee and Sun (1993). In this work, one of such

simple models is employed.

Consider a solid with volume B0 in the reference
configuration, and a deformation process charac-

terized by the mapping xðX; tÞ (see Fig. 2). A

material point initially at X will be located at
x ¼ Xþ u after deformation, in which u is the

displacement vector. A displacement based finite

element formulation is obtained from the weak

form of the momentum balance or dynamic prin-

ciple of virtual work. The weak form at time t in
total Lagrangian co-ordinates, i.e., referred to the

reference configuration, is given byZ
B0

½r0P
0 þ q0ðb0 
 aÞ� � gdB0 ¼ 0 ð1Þ

Z
B0

P0 : r0gdB0 

Z
B0

q0ðb0 
 aÞ � gdB0



Z
S0r

t � gdS0 ¼ 0 ð2Þ

where P0 is the first Piola–Kirchhoff stress tensor

at time t; b0, a, and t are the body force vector,
acceleration vector, and boundary traction vector

on volume B0 and boundary S0r, respectively.
Virtual displacement field g is assumed to be ad-
missible, and q0 represents the material density per
unit volume in the reference configuration. The

symbol r0 denotes the material gradient with re-

spect to the reference configuration, and �:� is used
to denote the inner product between second order

tensors, e.g., A : B 
 AijBji, where the summation

convention on repeated indices is implied.
Alternately, the weak form of the momentum

balance, in terms of spatial quantities, is given byZ
B0

s : rsgdB0 

Z
B0

q0ðb0 
 aÞ � gdB0



Z
S0r

t � gdS0 ¼ 0 ð3Þ

in which superscript s stands for the symmetric

part of the tensor, s ¼ FP0 is the Kirchhoff stress,

F is the deformation gradient at time t, and r is

the spatial deformation tensor. As Eq. (3) shows,

the equation of motion in its weak form states that

Fig. 2. Total Lagrangian continuum model.
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the work done by the stresses s over strains rsg
equals the work done by applied body forces, in-

ertia forces, and surface tractions. In the absence

of the body force, the above equation reduces to

the following discrete equation, M€UU ¼ 
ðfintþ
fsurfÞ, where M is the global mass matrix, €UU is the

global acceleration vector, fint is the internal force

vector and fsurf is the equivalent surface force

vector resulting from integration of the surface

traction vector. The impactor as well as the target

are discretized spatially into six node quadratic

triangular elements. The mass of triangular ele-

ments is lumped at their nodes to obtain the global
lumped mass matrix M. Details on the numerical

integration of the above equations can be found in

Espinosa et al. (1998b).

The constitutive response of the fiber composite

is formulated in terms of the Green–Lagrange

strain tensor E and the work conjugate second

Piola–Kirchhoff stress tensor S, Espinosa et al.

(2001). The Green–Lagrange strain rate tensor at
time step t þ Dt, is given as,

_EEij ¼
1

2Dt
½ðFkiFjkÞtþDt 
 ðFkiFjkÞt� ð4Þ

where Fij is the deformation gradient and Dt is the
incremental time step. All quantities in the above

equation are defined in the global co-ordinates.

The second Piola–Kirchhoff�s stress rate tensor is
given by a hyperelastic constitutive law, which in

rate form is given by,

_SSij ¼ Cijkl
_EEekl ð5Þ

where Cijkl is the elastic anisotropic material stiff-

ness constitutive tensor in the global co-ordinates

and _EEeij is the elastic component of the Green–
Lagrange strain rate tensor. As explained by Es-

pinosa et al. (1998b), the Kirchhoff stress s and
second Piola–Kirchhoff stress S are related

through the relation s ¼ FSFT. In the case of an-

isotropic materials, the elastic constitutive matrix

ðClÞ is defined in the local co-ordinate system of the

lamina. It is transformed to C ¼ TTClT to obtain

the constitutive matrix in the global co-ordinates
following standard transformation procedures.

The elastic components of the strain rate tensor

are obtained by an additive decomposition of the

total Green–Lagrange strain rate, namely,

_EEeij ¼ _EEij 
 _EEpij ð6Þ

In the above equation, _EEpij is the plastic strain rate
which is based on the associative flow rule,

_EEpij ¼ _kk
of
oSij

ð7Þ

Here, f is the flow potential and _kk is the plastic

rate proportionality factor. The inelastic behavior

of the composite is modeled based on a flow po-

tential quadratic in the second Piola–Kirchhoff�s
stress tensor, as proposed by Espinosa et al.

(1997), i.e.,

2f ðSijÞ ¼ a11S211 þ a22S222 þ a33S233 þ 2a12S11S22

þ 2a13S11S33 þ 2a23S33S22 þ 2a44S223

þ 2a55S213 þ 2a66S212 ð8Þ

For unidirectional fiber reinforced carbon/epoxy

composite with 2–3 isotropy, 1 direction being the
fiber direction and 2 normal to it in the lamina

plane, the above yield function reduces to, Weeks

and Sun (1996) and Weeks and Sun (1998),

f ðSijÞ ¼ 1
2
S222 þ a66S212 ð9Þ

Defining an effective stress as,

�SS ¼
ffiffiffiffiffiffi
3f

p
ð10Þ

and using Eqs. (8) and (10), the rate of plastic

work is given by,

_WW p ¼ Sij _EE
p
ij ¼ �SS�_EE_EE

p ð11Þ

The proportionality factor of Eq. (7) is obtained as

_kk ¼ 3�_EE_EE
p

2�SS
ð12Þ

where �_EE_EE
p
is the effective plastic strain rate. The

effect of strain rate and temperature can be mod-

eled by defining the material strength in terms of

an effective stress which includes temperature and

rate terms, namely,

�_EE_EE
p ¼ �_EE_EE

p

0

�SS
gð�EEp; T Þ

" #m
if �SS > gð�EEp; T Þ ð13Þ

gð�EEp; T Þ ¼ �SSy 1
�


 T 
 T0
Tm 
 T0

� �a	
ð14Þ
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in which �SSy is the flow stress at reference plastic

strain rate �_EE_EE
p

0 and temperature T0. Tm is the glass

transition temperature of the matrix material. �SS is
the flow stress at the current effective plastic strain

rate �_EE_EE
p
and temperature T . m and a are the rate

and temperature sensitivity exponents, respec-

tively. The reference flow stress �SSy is defined by an
experimentally found power law,

�SSy ¼
�EEp

A

 !1=n

ð15Þ

in which n is the strain hardening exponent. A

summary of the constitutive equations in discrete
form is given in Table 1. Other functional forms

for g can be used, for instance, functions involving
hyperbolic sines that are typical of polymer ma-

trices.

To account for a nonlinear response during

unloading, another power law is used. The coeffi-

cients used in the yield potential, given above, can

be identified from off-axis and out-of-plane shear

tests as explained in Espinosa et al. (2001).

3. Contact/interface cohesive law

The cohesive surface formulation has gained

prominence in simulating crack initiation, propa-

gation, and fragmentation in brittle materials, Xu

and Needleman (1995), Xu and Needleman (1996),

Xu (1996), Camacho and Ortiz (1996) and Espin-

osa et al. (1998a). Geubelle and Baylor (1998),

Espinosa et al. (1999) and Espinosa et al. (2001)

have shown that a combined model incorporating
homogenized constitutive relation for fiber com-

posite materials and cohesive interface elements

between lamina can be employed to analyze dy-

namic delamination in fiber composite materials in

agreement with experiments.

In this study, the interface law used to simulate

onset and crack propagation is based on a contact/

interface approach proposed by Espinosa et al.
(1998b) and Espinosa et al. (1999). As shown in

Fig. 3, interface elements are embedded along the

possible crack path. The tensile and shear tractions

developed by the interface element are calculated

from the interface cohesive law. This law describes

the evolution of these tractions and the cou-

pling between them as a function of relative

normal and tangential displacements. The com-
pressive traction, if any, is calculated through the

Table 1

Summary of constitutive equations

_SStþDt ¼ C _EEetþDt

_EEtþDt ¼ _EEetþDt þ _EEptþDt

_EEptþDt ¼ _kk
of

oStþDt
¼ 3�_EE_EE

p

2�SS
of

oStþDt
¼ �_EE_EE

p

tþDtNtþDt

NtþDt ¼
3

2

of
oStþDt
�SStþDt

¼ 3

2�SS

0 2a66S12 2a55S13
2a66S12 0 2a44S23
2a55S13 2a44S23 S33

2
4

3
5

tþDt

�SStþDt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ftþDtðSijÞtþDt

q

gð�EEptþDt; T Þ ¼ �SSy;tþDt 1

�

 T 
 T0

Tm 
 T0

� �a	

�SSy;tþDt ¼
�EEptþDt

A

 !1
n

�_EE_EE
p

tþDt ¼
�_EE_EE
p

0

�SStþDt

gð�EEptþDt; T Þ

" #m
Fig. 3. Interface/contact model with finite kinematics.
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impenetrability condition employed in the contact

module. Once the effective displacement jump ex-

ceeds a specified critical value, the interface ele-

ment is assumed to have failed, i.e., onset of crack

propagation is said to have taken place. The new

free surfaces as a result of crack propagation are
automatically created. Thereafter, the interaction

between the surfaces is described solely by the

contact algorithm, which includes frictional effects.

The failure of successive interface elements simu-

lates crack extension as in Xu and Needleman

(1996).

A detailed formulation of the interface element

and cohesive laws can be found in Espinosa et al.
(1999), and Espinosa and Zavattieri (2002a,b).

Instead of a zero thickness 4-noded quadrilateral

element used by Espinosa et al. (1999), a zero

thickness 6-noded interface element, as shown in

Fig. 4, is used in the present work. When inserted

at the boundary of 6-noded triangular elements

used in the discretization of the plates, the re-

sponse of the interface element becomes more
consistent to the discrete body response sur-

rounding it. The shape functions of the one-

dimensional 3-noded differential element are given

in a standard textbook on finite element methods.

Integration of surface traction to determine nodal

force vector is carried out using a 3-point Gauss

quadrature rule.

The interface law II, Espinosa et al. (1999), is

used to define the evolution of normal and tan-

gential traction and the coupling between them as

a function of the relative normal and tangential

displacement jumps, respectively. The equivalent

traction sðkÞ is given in terms of a non-dimen-
sionalized effective displacement jump parameter k
defined as:

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Un

dn

� �2
þ Ut

dt

� �2s
ð16Þ

where Un and Ut are the actual normal and tan-

gential displacement jumps at the interface. dn and
dt are the critical normal and tangential displace-
ment jumps at which the interface fails or crack

initiates in pure normal or pure shear mode, re-

spectively. The value of k ¼ 0 signifies the un-

stressed state of the element and k ¼ 1 signifies
total failure. As described earlier, the tensile and

shear state of the interface element for k6 1 is

determined from the interface cohesive law while

the compressive state is determined from the con-

tact law. After complete debonding, i.e., k ¼ 1, the

interface is characterized solely by the contact law.

The procedure adopted in the explicit integration

is summarized in Table 2.
It is assumed here that the interface traction

evolves reversibly up to a value k ¼ kc, similar to
the state of elastic loading and unloading in ma-

terials. Beyond kc, unloading from a state ku and
subsequent re-loading take place irreversibly. The

cohesive law used in the analyses is plotted in Fig.

5. The value of kc is selected such that the wave
speeds in the material with interfaces is the same as
the ones in the material without interfaces during

reversible loading. The interface law, so derived, is

given as,

Fig. 4. Six-noded interface element showing definition of global

and local co-ordinates.

Table 2

Contact and interface calculations based on interface traction

Load State Tn Tt

Tension-shear k < 1 Interface Interface

kP 1 Contact Open

Compression-shear k < 1 Contact Interface

kP 1 Contact Friction
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(i) for loading and unloading in the range

06 k6 kc:

sn ¼
Un

dn

smax
kc

; st ¼ a
Ut

dt

smax
kc

; ð17Þ

where sn and st are the normal and tangential
tractions corresponding to the normal and

tangential displacement jump Un and Ut re-

spectively, smax is the maximum normal trac-

tion beyond which failure initiates and a is a
mode mixity parameter;

(ii) for loading in the range kc < k6 1:

sn ¼ smax
U c
n

dn

1
 k
1
 kc

; st ¼ asmax
U c
t

dt

1
 k
1
 kc

ð18Þ
where U c

n and U c
t are the normal and tan-

gential displacement jumps attained at k ¼ kc,
(iii) for unloading and reloading in the range

06 k6 ku, where ku > kc is the last value of k
from where irreversible unloading took place:

sn ¼
Un

dn

smax
ku

; st ¼ a
Ut

dt

smax
ku

ð19Þ

(iv) for loading in the range ku < k6 1:

sn ¼ smax
Uu
n

dn

1
 k
1
 ku

;

st ¼ asmax
Uu
t

dt

1
 k
1
 ku

ð20Þ

where Uu
n and Uu

t are the normal and tan-

gential displacement jumps attained at k ¼ ku
during reverse loading.

In the absence of Mode II deformation, the area

under the sn 
 dn curve gives theMode I critical str-
ain energy release rate GIc, which can be written as:

GIc ¼ 1
2
dnsmax ð21Þ

Similarly, in the absence of Mode I deformation,

the area under the st 
 dt curve gives the Mode II
critical strain energy release rate GIIc, which can be

written as:

GIIc ¼ 1
2
adtsmax ð22Þ

Hence, if dn ¼ dt, a defines the ratio GIIc=GIc (Es-

pinosa et al., 1999).

As mentioned earlier, failure of successive in-

terface elements simulates crack propagation. For

this purpose, the time of failure of each Gauss point
along interface elements is recorded. This data

provides the crack length history. The crack speed

is obtained by differentiating the crack length data

using a four-point backward difference method. As

expected, the crack speed so obtained will have

oscillations depending on the element size.

4. Dynamic J 0 integral

The dynamic J 0 integral formulation was devel-

oped to establish a single parameter to characterize

the dynamic stress field and energy associated with

a dynamically growing crack, Nakamura et al.

(1995), Xu and Needleman (1996) and Kumar and

Kishore (1998). It is not the purpose here to review
the development of the formulation of J 0 and its

numerous versions for different loading conditions,

Fig. 5. Cohesive law: evolution of interface traction in loading and unloading.
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such as elasto-static, elasto-dynamic, elasto-plastic,

and elasto-plastic-dynamic loading of the crack tip.

In the present study, for a local co-ordinate system

xi where x1 is aligned parallel to the direction of
crack propagation, the dynamic J 0 integral is eval-

uated from a closed contour around the crack tip as
discussed in Atluri (1982), Nakamura et al. (1985),

Carpenter et al. (1986), Moran and Shih (1987) and

Nishioka (1994),

J 0 ¼ lim
C�!0

Z
C

ðW
�

þ T Þn1 
 Pji
oUi

oX1
nj

	
dC ð23Þ

J 0 ¼
Z

C0

ðW
�

þ T Þn1 
 Pji
oUi

oX1
nj

	
dC

þ
Z
A0

q
o2Ui

ot2
oUi

oX1

�

 q

oUi

ot
o2Ui

oX1ot

	
dA ð24Þ

where Pij are the ij components of the first Piola–

Kirchhoff stress tensor, q is the material density, W
and T are the stress–work density and the kinetic

energy density per unit initial volume defined as:

W ¼
Z t

0

S : Edt ¼
Xt

0

SijDEij ð25Þ

T ¼ 1

2
q

oUi

ot

� �2
ð26Þ

and ni is the normal to contour C. C� is the van-

ishing inner contour around the crack tip, taken as
the crack tip itself in the present analyses. C0 is the

outer contour including the crack faces, i.e.,

C0 ¼ Cþ
C þ C þ C


C. A0 is the area between the in-
ner and outer contours. Since the inner contour is

taken at the crack tip, A0 becomes the area en-
closed by the outer contour.

Using the weight function q, the dynamic J 0

integral is calculated as:

J 0 ¼
Z
A0

Pji
oUi

oX1

oqk
oXj

�

 ðW þ T Þ oqk

oXk

	
dA0

þ
Z
A0

Pji
o2Ui

oXjoXk

�

 oW
oXk

	
qk dA0

þ
Z
A0

q
o2Ui

ot2
oUi

oX1
qk:
 q

oUi

ot
o2Ui

oX1ot
qk

	
dA0

�
ð27Þ

All integrals are carried out over the area enclosed

by the outer contour C0. As PjioUi=oXj is the en-

ergy term, the contribution by the second integral

is neglected in the present analyses. Various

schemes for selecting the weighting function q has
been used in the past (Carpenter et al., 1986). In

the present analyses, q is unity from the crack tip

up to the node just before the outer contour, then

reduces linearly to zero at the outer contour. Also,

the component of q normal to the crack front and
interface elements are taken as zero.

The dynamic J 0 integral is evaluated for a num-

ber of contours using contour integrals aswell as the
weight function area integral. As per conventional

practice, the partsCCþ andCC
 are assumed parallel

to each other and traction-free. Due to reasons of

possible large rotation of the crack front and con-

tact zone behind the crack tip, these crack fronts are

not neglected. In order to account for these two

crack faces, contours are formed through the nodes

of 6-noded quadrilateral elements, instead of
forming through the integration points (Li and Shih

(1985)). For calculating J 0 based on the contour

integral, the stress–workdensityW and Pij, obtained
from Sij, are extrapolated to contour nodes from the

contributing integration points. However, the cal-

culation of J 0 from the weight function area integral

involves integration over the element�s area. Hence,
no extrapolation is required in this case and calcu-
lation is performed using standard finite element

procedures. As shown in the following sections, the

J 0 calculated from the contour integral equation

(24) and area integral equation (27) are identical.

5. Analyses

The above model is first validated by compari-

son with analyses reported in the literature. Then it

is used to study dynamic crack propagation in

unidirectional carbon fiber reinforced composite

materials.

5.1. Model validation by comparison with literature

results

Our integrated model is used to analyze dy-

namic crack propagation along bimaterial inter-
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faces and the results are compared with the liter-

ature data (Xu and Needleman, 1996). The prob-

lem being analyzed is shown in Fig. 6 on the left

(Fig. 1a in Xu and Needleman (1996)). A bima-

terial plate of width 6.1 mm and height 5.6 mm

with a central crack of length 0.5 mm is restrained
at the bottom and loaded with a specified constant

velocity at the top. Two cases are considered. In

one case, referred to as PMMA/MA the top half

plate is made of PMMA and bottom half plate is

made of an assumed material called A. The spec-

ified constant velocity in this case is V ¼ 30 m/s. In

the other case, referred to as MA/PMMA, the two

material halves are opposite to the first case and
the applied velocity is V ¼ 11:73 m/s. Due to

symmetry, only half of the plate is analyzed in each

case. The displacement and velocity boundary

conditions used in the two elastic analyses are

shown in Fig. 6 in the center. In both cases, the

velocity rises linearly from time zero to its maxi-

mum value at 0.1 ls as shown in Fig. 6 on the right
side. The finite element mesh with two zoomed
views at the pre-notch tip and the five contours

considered for the J 0 calculation are shown in Fig.

7. The mesh used for the analyses has 6712 nodes,

3214 triangular elements and 89 interface elements

with average length of interface elements as 0.03

mm. The properties of the two materials and in-

terface, as used in the analyses, are given in Table

3.
The crack speed obtained from the simulations

are shown in Fig. 8. The analyses results of Xu and

Needleman (1996) are also plotted in the same

figure for comparison. It is seen that the present

model is able to predict crack extension time and

crack speed in good agreement with the literature

data, even though the latter used a very fine mesh

with an interface element length of 0.004 mm. The

far field path independent integrals calculated at
the 5th contour for the two cases are shown in Fig.

9 and compared with the literature results. It is

seen that the J 0 value for MA/PMMA agrees well

with the literature data. For the PMMA/MA case,

there is qualitative agreement, but the J 0 value

obtained in the present work differs from the lit-

erature data. The observed differences in the crack

speed or J 0 may be due to the coarser mesh used in
the present analyses, differences in interface cohe-

sive law as used in the analysis, difference in de-

fining the onset of crack extension, as well as to the

more refined contact/interface methodology used

in the present analysis. In the present investiga-

tion, the crack is said to begin extension as soon as

an interface element fails, i.e., the displacement

jump at all the three integration points reaches the
critical displacement jump, i.e., k ¼ 1. Xu and

Needleman (1996) define the crack tip position

where the displacement jump is five times the

critical displacement jump. Contrary to the present

model, their approach ignores contact behind the

crack tip and the initial slope of the cohesive law is

quite different. The compressive part of their in-

terface cohesive law allows some interpenetration
at the interface, ahead as well as behind the crack

tip. The contact/interface approach of the present

model enforces impenetrability strictly and hence

Fig. 6. Problem geometry: model validation with analyses data for dynamic crack propagation along a bimaterial interface.
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is bound to modify the crack tip stress field.

Nevertheless, the agreement obtained even with

the coarse mesh used in the present analyses is

reasonable.

5.2. Unidirectional fiber composite plate loaded in

mode II

The above analyses show that the proposed

model predicts the phenomenon of dynamic crack

propagation in close agreement with analyses re-

sults taken from literature. Detailed analyses are

carried out next to study the phenomenon of dy-

namic crack propagation in an unidirectional
graphite/epoxy composite. The problem definition

is shown in Fig. 10. A pre-notched unidirectional

composite plate of total width 250 mm and height

300 mm is considered. The fiber direction is taken

Table 3

Materials properties for validation with literature analyses

Materials properties Units

PMMA Material A

Density

q0 ¼ 1190:0 q0 ¼ 5950:0 kg/m3

Elastic properties

E ¼ 3:24 E ¼ 6:44 GPa

m ¼ 0:35 m ¼ 0:15

Cs ¼ 1004 Cs ¼ 686 m/s

CR ¼ 938 CR ¼ 616 m/s

Interface properties

Tmax ¼ 162 MPa

dn ¼ 2:1753 lm
dt ¼ 0:933 lm
a ¼ 2:3315

kc ¼ 0:05

Fig. 7. Finite element mesh and contours used in the analyses.
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parallel to the X-direction. The length and maxi-
mum opening of the pre-notch, parallel to the X-

axis, are 25 and 1.5 mm, respectively. The plate is

impact loaded off-center on the face opposite to the

pre-notch face. The loading is provided by speci-

fying a constant velocity in the negativeX-direction

over an assumed projectile diameter. The projectile

diameter in all the analyses is kept constant as 50

mm. In order to minimize numerical oscillation, it

is assumed that the velocity increases to the maxi-

mum over a time period of 1.0 ls and remains

constant thereafter at the specified value of V m/s.

The problem geometry and boundary conditions so

defined are consistent with the experimental set up
reported in Coker and Rosakis (2001). In our cal-

culations the plate dimensions are slightly larger;

however, this difference does not modify the

physics of the problem and, as it will be discussed

later, most of the features observed experimentally

are captured in our simulations.

Since all materials and interface properties are

not available for one particular graphite/epoxy
composite, they are judiciously selected from two

sources. Elastic and anisotropic flow potential

data for the unidirectional composite plate are

taken from Weeks and Sun (1996), while the in-

terface properties are taken from Stout et al.

(1998). It is assumed that this combination of

mechanical and interface properties provides an

idealized unidirectional carbon/epoxy composite
for the purpose of studying the phenomenon of

dynamic crack propagation. The material proper-

ties used in the analyses are summarized in Table

4. Note that these elastic constants are not the

same to the ones reported in Coker and Rosakis

(2001), in fact the work here reported was done

simultaneously and independently. Hence, the nu-

merical analyses here reported show that inter-
sonic crack propagation is a phenomenon that

may occur in a variety of unidirectional fiber

composites.

The top and bottom half of the composite plate

are discretized into 6-noded quadratic triangular

elements, while 6-noded quadratic interface ele-

ments are embedded between the two halves. As

shown on the left in Fig. 10, crack extension ini-
tiates at the pre-notch tip and is allowed to prop-

agate up to a total width of 200 mm. The last 50

mm width of the plate is considered bonded

without any interface elements to avoid interface

failure from the impact face. The finite element

mesh size is a minimum around the crack path and

gradually increased towards the top/bottom

and right side of the plate. The mesh has 52,032
nodes, 25,602 triangular elements and 295 inter-

face elements. The average size of the quadratic

Fig. 8. Crack speed predicted by present analyses and com-

parison with literature data.

Fig. 9. Plot of dynamic integral, J 0, history and comparison

with literature data.
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interface elements, along the allowed crack path, is
0.1 mm. The full plate mesh with two zoomed

views and one enlarged view at the pre-notch tip

are shown in Fig. 11 together with the five con-

tours used to evaluate the dynamic path indepen-

dent integral J 0. Starting from the nearest contour

to the crack tip, contours are numbered serially
outwards as shown in the bottom plot of Fig. 11.

Analyses are carried out at five different impact

velocities (V) of 5, 10, 20, 30 and 40 m/s and for

different coefficients of friction along the crack face

behind the propagating tip. The crack faces are

assumed frictionless for the impact velocities of 5,

10 and 20 m/s. Whereas, the cases of V ¼ 30 and

40 m/s are analyzed for both the frictionless case as
well as with friction coefficients of 0.5, 1, 5 and 10.

It was found that propagating crack interacts with

the stress field generated at the beginning of the

bonded interface (last 50 mm of the plate width).

This interaction modifies the crack tip stress field

and the features of crack propagation. For this

reason, analyses results are discussed for a maxi-

mum crack extension of 150 mm, i.e., while the
interaction is not present. Table 5 summarizes the

various performed analyses including impact ve-

locity and friction coefficient. A discussion of the

results is given in the following sections.

5.2.1. Crack length and crack speed

Fig. 12 shows the evolution of crack length (left)

and crack speed (right) obtained from analyses
corresponding to a frictionless crack wake. Crack

extension initiates at 58.4, 51.6, 36.1, 32.4 and 31.2

ls, when the composite plate is impacted at veloc-
ities of 5, 10, 20, 30 and 40 m/s, respectively. The

Fig. 10. Dynamic crack propagation in unidirectional fiber reinforced composite––problem definition (left) and specified impact ve-

locity (right).

Table 4

Materials properties of unidirectional carbon/epoxy composite

Materials properties Units

Properties Symbol Value

Density q0 1580 kg/m3

Elastic properties C11 131.83 GPa

C22 ¼ C33 13.90 GPa

C44 ¼ C55 6.00 GPa

C66 3.45 GPa

C12 ¼ C21 6.68 GPa

C13 ¼ C31 6.68 GPa

C23 ¼ C32 6.98 GPa

Stress wave Cl 9134 m/s

speeds Cs 1949 m/s

CR 1811 m/s

Yield function a66 2.0 –

Plastic flow

properties

�SS0 1.00 Pa

For �EEp0 6 0:76%:
A ¼ 1:26� 10
44 Pa

n ¼ 5:1 –

For �EEp0 > 0:76%:

A ¼ 1:76� 10
72 Pa

n ¼ 8:5 –

Flow rate

properties

_�EE�EEp0 1:0�
10
5

s
1

m 40.0 –

Interface cohesive Tmax 85.00 MPa

law parameters dn 7.06 lm
dt 17.70 lm
a 1.20 –

kc 0.01 –
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crack initial speed for the five impact velocities are

209, 382, 658, 1829 and 2146 m/s. After initiation,

the crack tip accelerates and attains steady-state
speed before stopping or before interacting with

boundary waves. The crack acceleration is found to

be of the order of 107g for impact velocities of 5
and 10 m/s and of the order of 109g for impact
velocities of 20, 30 and 40 m/s, where g is the

gravitational acceleration. The maximum crack

speed at the five impact velocities is obtained as

1856, 1879, 7512, 7600, and 7600 m/s.

Fig. 11. Finite element mesh and contours for J 0 calculation used in the analyses.

Table 5

Summary of analyses for fiber composite plate

Analysis Impact velocity

(m/s)

Friction coefficient

1 5.0 0.0

2 10.0 0.0

3 20.0 0.0

4 30.0 0.0, 0.5, 1.0

5 30.0 5.0, 10.0

6 40.0 0.0, 0.5, 1.0

7 40.0 5.0, 10.0
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The above results show that the present ana-

lyses predict intersonic crack propagation in the

unidirectional fiber composite when the impact

velocity exceeds a given threshold. At the lowest 5

m/s impact velocity, the crack accelerates after the
onset of extension and attains a velocity of about

1465 m/s. This state is not a steady state and the

crack speed first starts reducing. Then, it again

starts increasing gradually and attains the steady

state at 1856 m/s, which is 95% of the shear wave

speed (1949 m/s) of the material. At this impact

velocity, the crack tip deaccelerates before reach-

ing the end of the allowable path. At 10 m/s impact
velocity, the crack tip accelerates after initiation,

and when it attains a maximum speed. Basically,

the crack reaches a steady state with an average

speed of 1879 m/s, which is 96% of the shear wave

speed. Fig. 12 shows a different behavior when the

impact velocity is 20 m/s. After initiation, the

crack speed remains almost steady at 766 m/s for

10 ls and then accelerates to a speed of 2068 m/s,
thus crossing the shear wave speed threshold of the

material. Then, it accelerates once more and at-

tains a near steady-state speed of 7512 m/s. Thus,

the initiation speed for the 5, 10 and 20 m/s impact

velocity remains below the shear wave speed and

the crack enters the intersonic regime when the

impact velocity reaches 20 m/s. On the contrary,

the initiation speed at 30 and 40 m/s impact ve-
locities is above the Rayleigh wave speed (1811 m/

s) and 94% and 110% of the shear wave speed of

the material, respectively. The maximum steady-

state crack speed is found to be 7600 m/s, for both

impact velocities, which is 3.9 times the shear wave

speed and 83% of the longitudinal wave speed of

the material.

The above results show that crack extension
speed and maximum crack speed, in sub-sonic re-

gime, monotonically increase with the increase in

impact energy. The impact velocity of 10 m/s is

found to be the limit beyond which the dynamic

crack propagation becomes intersonic. The crack

attains a steady state in the intersonic regime and

the maximum speed is approximately the same for

the three impact velocities of 20, 30 and 40 m/s as
considered in the analyses. Thus, the possibility of

intersonic crack propagation in unidirectional fi-

ber composites is here established beyond an im-

Fig. 12. Evolution of crack length (left) and crack speed (right) at different impact velocities and frictionless crack front.
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pact velocity of 10 m/s for assumed steel impactor,

50 mm in diameter, and composite properties. The

crack speed attains a maximum of 83% of the

longitudinal wave speed, as the impact velocity or

imparted energy, exceeds a threshold. These fea-

tures are in close agreement with the analytical
predictions of Huang et al. (1999) in which a

critical crack velocity is identified, in the steady-

state regime, as the only velocity for which the

energy delivered to the crack tip is non-vanishing

and finite. The stress wave phenomena influencing

crack extension and dynamic propagation is dis-

cussed next.

5.2.2. Stress wave history

The pre-notch tip stress and deformation fields,

onset of crack extension and observed variation in

crack speed are here discussed in terms of stress
wave propagation within the plate. Upon asym-

metric impact, compressive, as well as shear stress

waves, are generated in the lower half of the plate.

The waves travel in the X-direction towards the

pre-notch tip. The shape of the two stress waves

are similar to the prescribed boundary velocity,

i.e., the stress magnitude increases linearly from

zero to a maximum. The speed of the stress wave
normal to the fiber direction, i.e., in the Y-direc-

tion, is 2966 m/s. This is approximately one third

of the stress wave speed in the fiber direction. As a

result, the compressive stress wave develops a

front of an expanding cylinder, instead of being

spherical as it is the case in homogeneous materi-

als. The longitudinal stress wave in the fiber di-

rection carries with it a compressive transverse
stress and shear stress generated due to material

Poisson�s effect and elastic anisotropy. These

stresses, specially the shear stress, appear to have a

waveform traveling at the speed of the longitudinal

wave speed in the fiber direction. Nevertheless, it

should not be confused with the shear wave, which

travels at a much smaller speed of 1949 m/s.

The compressive stress wave reaches the pre-
notch tip at 24.6 ls. The entire pre-notch tip is

loaded in compression at this instant. Moreover,

the tip is also loaded in shear, i.e., mode II, due to

the material elastic anisotropy and asymmetric

impact loading. The compressive stress pulse

reaches the traction-free left plate surface at 27.4

ls. At this instant, a release wave as well as a

tensile transverse wave are generated. This release

wave unloads the material while propagating in

the þX-direction. It reaches the pre-notch tip at
30.1 ls and loads it further in shear due to the

presence of the traction-free pre-notch surfaces.
Crack extension depends on the history of the

energy delivered to the pre-notch tip. At the lowest

impact velocity of 5 m/s, the energy imparted to

the tip by the incident wave is not sufficient until

the release tensile transverse wave reaches it and

starts loading the crack in mode I. At the highest

impact velocities of 40 m/s, the shear energy im-

parted to the pre-notch tip is such that crack ex-
tension occurs earlier. The crack extends at 31.2 ls
in predominantly mode II.

5.2.3. Features of sub-sonic crack propagation

Fig. 13 shows crack tip state parameters, for an

impact velocity of 10 m/s, immediately after the

onset of crack extension and during crack propa-

gation at maximum speed. The plots are contours

of longitudinal stress in the fiber direction, S11,
transverse (normal) stress S22, shear stress SP12,
and effective plastic strain Epeff , i.e., �EE

p. Black ar-
rows show the position of the crack tip. The

maximum crack speed in this case is 1879 m/s,

which is 96% of the shear wave speed of the

composite. The figure shows that at the onset of

crack extension, the normal traction is tensile and

the tangential tractions across the pre-notch tip is

oppositely directed making the shear stress con-

tinuous across the crack front. Hence, the crack
initiates under mixed-mode loading. As shown

later, the normal and tangential tractions at the

onset are of the same order of magnitude during

mixed-mode loading. At steady state, the normal

traction above the crack front is compressive,

which unloads the mode I loading, while the shear

stress is continuous ahead of the crack tip. This

suggests that the crack propagates at steady state
in predominantly mode II, which is confirmed in a

later discussion of interface traction history. The

figure also shows that the area of plastic flow in the

material is small and limited to the crack front.

The stress field does not present any discontinuity

line behind the crack tip.
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5.2.4. Features of intersonic crack propagation

The crack tip field changes in the intersonic

regime. Figs. 14 and 15 show crack tip parameters

for impact velocities of 30 and 40 m/s at which the

crack propagates at intersonic speed. In both

cases, the crack tip normal traction is compressive

at the onset of crack extension. The release wave

generated from the left boundary has not reached
the crack tip, as can be inferred from the figures. The

tangential traction is oppositely directed while the

shear stress is continuous across the interface

around the tip. Interface elements fail predomi-

nantly under mode II loading. As the crack speed

increases and attains steady state, the release pulse

catches up and the crack tip develops tensile nor-

mal traction, though small in magnitude. The
phenomena increases the mixed-mode loading seen

by the reduction in the continuity of shear stress

across the interface. The crack propagates pre-

dominantly in shear, mode II. This shows that

though the crack tip loading is mixed-mode, the

steady-state intersonic crack propagation takes

place under predominantly mode II loading. The

plastic region remains small and limited to the

crack front and its wake. Most importantly, a

shock wave resulting from the crack propagating

at a speed higher than shear and surface waves, are

seen emanating from the crack tip at 49 and 43 ls
for the 30 and 40 m/s impact velocity, respectively.
The shock waves are shown more clearly in Fig. 16

for the two impact velocities. In the figure, the

shock wave is marked by white dashed lines.

When the impact velocity is 30 m/s, the onset of

crack extension occurs at 32.4 ls predominantly in
shear. At this instant, the release wave, in the

lower half plate, is reaching the crack front and the

upper half plate, near the crack tip, is under
compression. The crack tip and its surrounding

remain under compression. The crack accelerates

and attains maximum speed at steady state under

primarily mode II loading. As the release wave, in

the lower half plate, catches up, the crack tip

Fig. 13. Contours of S11, S22, SP12 and Epeff for the case of 10 m/s impact velocity at onset of crack extension (top) and at steady state of
maximum crack speed (bottom).
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normal loading changes to tensile. This change in

mixed-mode loading coincides with oscillations in
crack speed as can be seen in Fig. 12. However,

these oscillations are small and the propagation

speed can be assumed to be steady at its maximum

value. A single shock wave, manifested as a stress

discontinuity, develops behind the propagating

crack tip in the upper half. This is evidently no-

ticeable in the normal stress contours at 49 ls and
also noticeable in the tangential and shear stress
contours. Fig. 16 shows that the line of disconti-

nuity emanates from the crack tip. The shock wave

trails the crack tip preserving its magnitude. The

inclination of the discontinuity with respect to a

vertical line remains constant during steady-state

propagation as expected. The prediction of a single

shock wave is in contrast to our earlier analyses,

Dwivedi and Espinosa (2001), in which two dis-
continuity lines, one emanating from the crack tip

and another behind it, were predicted for a 125

mm wide plate and an interface with a shear

strength of 300 MPa. This difference suggests that

formation of shock waves and their features are

strongly dependent on the interface properties and

plate dimensions. It should be noted that formation

of two shock waves were also experimentally ob-

served (Coker and Rosakis, 2001), as a function of

impact velocity.

A similar phenomenon occurs when the impact

velocity is 40 m/s. The release wave in the upper

half plate entraps the compressive stress field pre-

sent at the crack front. The interaction of this re-
lease wave with the compressive field creates an

intense shear stress field ahead of the crack tip. A

stress discontinuity develops, as seen in Figs. 15

and 16, when the crack propagates intersonically.

The inclination of the discontinuity line, from the

vertical line, is slightly larger than the inclination

for the 30 m/s impact velocity.

5.2.5. Nature of mode mixity with increased impact

velocity

The normal and tangential traction histories at

the center of the interface elements along the crack

Fig. 14. Contours of S11, S22, SP12 and Epeff for the case of 30 m/s impact velocity at onset of crack extension (top) and at steady state of
maximum crack speed (bottom).
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path are shown in Fig. 17, for impact velocity of 5
m/s, and in Fig. 18, for impact velocities of 30 m/s

(left) and 40 m/s (right). Starting from the first

element at the pre-notch tip (plotted in black), the

tractions are plotted at an interval of 20 interface
elements, i.e., element numbers 1, 21, 41, etc. At 5

m/s impact velocity, the crack extension occurs

under mixed-mode loading. This is seen by the

Fig. 15. Contours of S11, S22, SP12 and Epeff for the case of 40 m/s impact velocity at onset of crack extension (top) and at steady state of
maximum crack speed (bottom).

Fig. 16. Shock wave trailing behind the crack tip propagating at intersonic speed for the 30 m/s (left) and 40 m/s (right) impact ve-

locities.
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comparable magnitude of normal and tangential
tractions at element 1. The normal traction re-

mains predominant and crack propagates under

mixed mode till the failure of element number 91.

Subsequently, the normal traction starts decreas-

ing while the tangential traction increases from

element number 121 onwards. This phenomenon is

found to occur as the crack tip velocity approaches

the shear wave speed Cs (see Fig. 12). This change
in the loading mode from mixed to predominantly

mode II is associated to the increase in crack

speed, as discussed earlier for the case of 10 m/s

impact velocity. At an impact velocity of 30 m/s,
which leads to intersonic crack propagation, the

normal traction at the onset of crack extension is

quite small when compared to the tangential

traction (see Fig. 18, left and bottom). The inter-

face is loaded predominantly in shear during fail-

ure. As the crack propagates, the normal traction

increases due to the arrival of a tensile pulse, but

the magnitude remains below 20 MPa. Similar
phenomena take place at an impact velocity of 40

m/s. The normal traction developed during prop-

agation is larger when compared to the 30 m/s case
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Fig. 17. Crack tip loading history along the crack propagation path, for the case of 5 m/s impact velocity, plotted at an interval of 20

interface elements. Stress peaks in normal and tangential tractions, from left to right, correspond to sequence of interface elements
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due to the increase in pulse amplitude. Neverthe-

less, the intersonic crack propagation at both ve-

locities occurs under predominantly mode II

loading. In the sub-sonic regime, crack propaga-

tion also takes place under mixed-mode loading

but with equal contribution of modes. An increase
in the imparted energy increases mode II loading

at the crack tip and, consequently, increases the

crack speed. Similar findings were reported by

Geubelle and Kubair (2001) for the case of shear

cracks in homogeneous media.

5.2.6. Contact behind the crack tip

As previously mentioned, analyses predict
contact behind intersonically propagating crack

tips. Figs. 19 and 20 show contours of longitudinal

stress at the onset of crack extension and at the

instant of maximum crack speed, for the cases of 5

and 40 m/s impact velocities, respectively. When

the impact velocity is 5 m/s, the crack propagates

at sub-sonic speed and opens. The crack front re-

mains open throughout the event due to tensile

normal tractions. By contrast, at 40 m/s, com-

pressive normal tractions are observed, behind the

intersonically propagating crack tip, and a well

developed large contact zone is observed (see Fig.
20). At this impact velocity, the entire crack wake

remains closed as if the plate would have never

failed.

5.2.7. Effect of friction on intersonic crack propa-

gation

All the above analyses results are for the case of

frictionless crack surfaces. Further analyses were
carried out, for the impact velocities of 30 and 40

m/s, when the friction coefficient is 0.5, 1, 5 and 10.

The crack speed history for the five values of

friction coefficients are shown in Fig. 21; for 30 m/s

(left) and 40 m/s (right) impact velocities. The

figure shows that the crack extension time and

Fig. 19. Sub-sonic crack propagation and open crack front for the case of 5 m/s impact velocity.

Fig. 20. Intersonic crack propagation and close crack front for the case of 40 m/s impact velocity.

502 S.K. Dwivedi, H.D. Espinosa / Mechanics of Materials 35 (2003) 481–509



steady-state speed remains unchanged with the

increase in friction. A friction coefficient of up to 1

does not have any discernible effect on the crack

propagation history. However after the onset of

extension, when the friction coefficient is larger,
say equal to 5, the crack speed first reduces and

then increases. The reduction is larger as the fric-

tion coefficient is increased from 5 to 10. However,

friction does not have an appreciable effect on the

maximum crack speed at steady state. A more re-

markable effect due to the increase in friction co-

efficient is observed in the stress field behind the

crack tip.

Figs. 22 and 23 compare the shock wave ori-

entation emanating from the crack tip at the in-

stant of steady-state crack speed. Remarkably, the
increase in friction coefficient spreads the region of

compressive stress over a larger area in front of the

crack tip. This smearing effect is also associated

with the increase in compressive stress and the

increase in inclination of the discontinuity line

with respect to the vertical line.

Fig. 21. Effect of friction along the crack front on the intersonic crack speed for 30 m/s (left) and 40 m/s (right) impact velocities.

Fig. 22. Shock wave for frictionless crack surfaces (left) and with a friction coefficient of 10 (right). Impact velocity is 30 m/s. Arrows

indicate crack tip position.

S.K. Dwivedi, H.D. Espinosa / Mechanics of Materials 35 (2003) 481–509 503



5.2.8. Path independent integral J 0 vs. impact

velocity

The path independent integral J 0 history calcu-

lated for various contours are shown in Fig. 24 for

the impact velocities of 10 m/s (left) and 40 m/s

(right). All values of J 0 here reported are for the

case of frictionless crack surfaces. It is found that
J 0 is basically path independent as long as release

waves, from the plate boundaries, do not enter the

domain of integration used to compute J 0. In the

case of sub-sonic crack propagation this is the case

up to about 50 ls. For intersonic crack propaga-

tion, impact velocity of 40 m/s, J 0 is path inde-

pendent only for contours close to the crack tip.

Note that J 0 value at contours 1 and 2 (refer to Fig.

11) are the same within the desired tolerance.

However, the value of J 0 increases with distance

from the crack tip, as seen for contours 3–5. This

occurs because the contours begin to capture ef-
fects from release waves emanating from the plate

boundaries. It can be inferred that J 0 can serve as a

characterizing parameters for dynamic crack

propagation if computed close to the crack tip

field. J 0 for contours 1 and 2 starts increasing from

Fig. 23. Shock wave for frictionless crack surfaces (left) and with a friction coefficient of 10 (right). Impact velocity is 40 m/s. Arrows

indicate crack tip position.

Fig. 24. J 0 value at different contours for impact velocities of 10 m/s (left) and 40 m/s (right).
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27.4 ls. The average value for the two contours at
the onset of crack extension, at 31.2 ls, is 1250
J/m2, which compares well to the GIc of 300 J/m

2

and GIIc of 900 J/m
2. After crack extension, J 0 in-

creases slightly and attains the value of 1400 J/m2

at 40.5 ls. This represents an increase of 12% with
respect to the value at onset. However, from 40.5

ls onwards, J 0 starts increasing at a much higher

rate. This increase can be attributed to the inter-

action of the crack tip stress field with release wave

stress fields. As mentioned earlier, the steady-state

intersonic crack speed is close to the material

longitudinal wave speed. This eventually leads to

interaction of the crack tip stress field with release
stress waves originating at the boundaries of the

finite size composite plate. In other words, the

transient reflected stress field makes the calculation

contour dependent. This is reflected in the pro-

nounced increase in the value of J 0 after 40.5 ls.
Even at the last three contours, J 0 remains ap-

proximately constant for a while and then starts

increasing. The increase in J 0 is observed until
approximately 47.5 ls and then it starts to drop.
This reduction occurs due to the interaction of the

crack tip stress state with the bonded zone at

the end of the interface line and must not be

confused with a feature of intersonic crack prop-

agation. The approximately constant value of J 0,

computed during steady-state crack propagation

and before boundary effects enter the domain de-
lineated by the outer contour, indicates that this

parameter can be used as a characteristic material

property corresponding to intersonic crack prop-

agation.

6. Conclusions

The simulations presented in this article show

that the proposed model adequately predicts the

phenomenon of dynamic crack propagation in

bimaterials and fiber reinforced composites. The

crack speed and the path independent integral J 0

obtained from the present analyses agree well with

the data reported in the literature.

The present numerical study confirms the phe-
nomenon of intersonic crack propagation in fiber

reinforced composite materials, for which limited

experimental data exist in the literature. Due to

inherent anisotropy, cracks propagate in fiber

composite materials under mixed-mode loading

conditions. However, the associated phenomenon

depends mainly on the imparted impact energy. At

low impact velocities, below 20 m/s, the crack
propagates at sub-sonic speed, i.e., below the shear

wave speed of the material. Mode I loading of the

crack tip is comparable to mode II loading in this

regime. As a result, the crack front remains open

and no line of discontinuity or shock wave ema-

nates from the propagating crack tip.

At higher impact velocities, 20 m/s or more,

steady-state intersonic crack propagation is pre-
dicted by the present simulations. The maximum

crack speed at steady state, for 20, 30 and 40 m/s

impact velocities, is found to be as high as 3.9

times the shear wave speed and 83% of the longi-

tudinal wave speed of the material. Mode II

loading of the crack speed becomes more and

more predominant as the crack speed increases in

the intersonic regime. A discontinuous line and
resulting large contact zone behind the intersoni-

cally propagating crack are predicted by these

analyses. These findings are in total agreement

with the experimental observations of Coker and

Rosakis (1998, 2001) even when our simulations

were not based on the same exact plate dimension

and composite properties. Our computational

results are also consistent with the analytical
predictions reported in Huang et al. (1999).

These authors found that in the steady-state re-

gime, an asymptotic elastic field gives a finite

and non-vanishing energy flux into the crack tip

only when the crack velocity is equal toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC11C22 
 C12C12Þ=C66ðC12C22Þ

p
Cs. In fact, our

simulations show that above a given impact ve-

locity threshold, the crack accelerates toward this
critical velocity until a steady state is reached.

How fast this state is attained is a function of

impact velocity, i.e., the amount of energy deliv-

ered to the crack tip, when a constant cohesive

energy is assumed. Moreover, the calculations re-

veal that during the unsteady states, other crack

tip velocities are possible with a non-vanishing

value of J 0 in agreement with the analyses reported
by Broberg (1999). A similar computational find-

ing was reported by Needleman (1999) for the
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particular case of shear cracks in homogeneous

materials having a weak plane (see also Burridge

et al., 1979).

The simulations show that the contour integral

J 0 is constant for near field contours. The pre-

notch tip stores energy slightly in excess of the
specified critical strain energy release rate GIIc.

However, it remains constant during the steady-

state crack propagation phase. This is in contrast

to available literature results based on singular

models of fracture in which the strain energy re-

lease rate reduces to zero as the crack speed in-

creases in the intersonic regime. The analyses also

show that J 0 can serve as a parameter for estab-
lishing conditions for dynamic crack propagation

in materials subjected to stress wave loading.

Further studies are needed to elucidate the effect of

the friction coefficient on J 0. Likewise, numerical

results sensitivity to plate and mesh dimensions

needs further investigation.

The simulations also show that very high fric-

tion in the crack surfaces has an effect on crack
propagation. Increased friction reduces the crack

speed after initiation, however the maximum

crack speed at steady state remains unchanged.

Increased friction also smears the shock wave and

increases its inclination with respect to a vertical

direction. Our simulations indicate that the effect

of release waves from boundaries and the effect of

interface strength on shock wave formation are
important and need to be experimentally and

computationally studied in greater detail.

The computational results also highlight that

the stress wave history plays an important role on

the crack propagation event. It was observed that

beyond a certain time, the propagating crack tip

stress field interacts with release stress waves gen-

erated at the plate right boundary. The effect
thereafter is devastating with a number of crack

nuclei originating simultaneously ahead of the

crack tip. The calculations were ended beyond this

point in order to study the steady-state regime of

the propagating crack in isolation. This is an im-

portant observation from the view point of car-

rying out and interpreting experiments. In order to

eliminate such interaction, it becomes necessary to
select sample dimensions and loading conditions

appropriately.

Lastly, it should be emphasized that the com-

putational methodology here presented can be

applied to a variety of technological problems of

interest in which contact and friction behind the

crack tip needs to be accounted for. Applications

in which such tool is particularly useful is not re-
stricted to the analysis of novel heterogeneous

materials but also to homogeneous materials. For

instance, in earthquake predictions involving dy-

namic shear cracks propagating in the Earth�s
crust.
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