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A B S T R A C T   

Naturally occurring biological materials with stiff fibers embedded in a ductile matrix are commonly known to 
achieve excellent balance between stiffness, strength and ductility. In particular, biological composite materials 
with helicoidal architecture have been shown to exhibit enhanced damage tolerance and increased impact energy 
absorption. However, the role of fiber reorientation inside the flexible matrix of helicoid composites on their 
mechanical behaviors have not yet been extensively investigated. In the present work, we introduce a Discon-
tinuous Fiber Helicoid (DFH) composite inspired by both the helicoid microstructure in the cuticle of mantis 
shrimp and the nacreous architecture of the red abalone shell. We employ 3D printed specimens, analytical 
models and finite element models to analyze and quantify in-plane fiber reorientation in helicoid architectures 
with different geometrical features. We also introduce additional architectures, i.e., single unidirectional lamina 
and mono-balanced architectures, for comparison purposes. Compared with associated mono-balanced archi-
tectures, helicoid architectures exhibit less fiber reorientation values and lower values of strain stiffening. The 
explanation for this difference is addressed in terms of the measured in-plane deformation, due to uniaxial tensile 
of the laminae, correlated to lamina misorientation with respect to the loading direction and lay-up sequence.   

1. Introduction 

Bio-composites found in the exoskeletons of crustacean and mollusk 
shells combine stiff mineralized (inorganic) reinforcement with ductile 
biopolymers (organic) to form complex hierarchical architectures (Chen 
et al., 2012; Meyers et al., 2008; Zhang et al., 2010). The superior me-
chanical properties of these protective architectured materials, such as 
stiffness, strength, and fracture toughness, are of critical importance to 
the organism survival. This is accomplished in part through the com-
bination of stiff and ductile materials and a hierarchical architecture 
over a range of length scales. Interestingly, nature offers a broad di-
versity of architectural motifs, exemplify the multitude of ways in which 
exceptional mechanical properties can be achieved. Such diversity is the 
source of bio-inspiration and its translation to synthetic material sys-
tems. Indeed, bio-inspired materials made by additive manufacturing 
technologies display similar deformation mechanisms and superior 
properties (de Obaldia et al., 2015; Porter et al., 2017; Studart, 2016; 
Suksangpanya et al., 2018; Yin et al., 2019; Zhang et al., 2016, 2015). 
On the other hand, metallic layered composites made by sintering 

exhibit enhanced damage tolerance (Hofer et al., 2020). In this work, we 
combine two architectures: (i) the “fiber helicoid (or Bouligand)” 
(Bouligand, 1972; Meyers et al., 2008) and (ii) the “brick and mortar” to 
investigate, what we will call, discontinuous fiber helicoids (DFH), which 
was first introduced and investigated by Zaheri et al. (2018). As a 
complement to this previous work, the current paper focuses on the fiber 
reorientation and its contribution to strain stiffening behavior before 
failure occurs, which is analyzed via nonlinear micromechanical finite 
elements. The fiber helicoid is found in the dactyl club of the Peacock 
mantis shrimp (Stomatopod) (Fig. 1(a) and (b)) (Grunenfelder et al., 
2014; Guarín-Zapata et al., 2015; Weaver et al., 2012), the cuticle of 
arthropods (Cheng et al., 2011, 2008; Grunenfelder et al., 2014; Raabe 
et al., 2005; Sachs et al., 2008; Weaver et al., 2012; Yao et al., 2013; 
Zelazny and Neville, 1972), fish scales (Bigi et al., 2001; Bruet et al., 
2008; Fang et al., 2014; Gil-Duran et al., 2016; Ikoma et al., 2003; Lin 
et al., 2011; Meyers et al., 2012; Murcia et al., 2017; Torres et al., 2008; 
Yang et al., 2014, 2019; Zhu et al., 2012; Zimmermann et al., 2013), and 
plants (Chung et al., 2011; Roland et al., 1989). The brick and mortar is 
found in sea shells, e.g., the innermost layers of red abalone (Haliotis 
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rufescens) (Barthelat et al., 2016; Ji and Gao, 2004; Menig et al., 2000; 
Salinas and Kisailus, 2013; Sun and Bhushan, 2012) (Fig. 1(c) and (d)). 

While the fracture resistance, toughening behavior and photonic 
sensory mechanism of helicoid architecture under out-of-plane impact, 
bending (Ginzburg et al., 2017; Grunenfelder et al., 2014; Mencattelli 
and Pinho, 2019; Suksangpanya et al., 2018, 2017; Weaver et al., 2012), 
and uniaxial tensile loading (Zaheri et al., 2018) (Kose et al., 2019; 
Shishehbor and Zavattieri, 2019) have been extensively investigated, 
the mechanical behavior of fiber helicoid architectures, prior to failure, 
have been much less studied. For instance, it has been recently proposed 
that helicoidal arrays of fibrils, present in Arapaima Gigas scales, adapt to 
the loading environment through laminae rotation towards the loading 
direction, whereas other laminae, with large off-axis angle, rotate away 
from the loading direction (Quan et al., 2018; Yang et al., 2014; Zim-
mermann et al., 2013). As reported by Zimmerman et al. (Zimmermann 
et al., 2013), this so-called “sympathetic” fiber reorientation has been 

found to contribute to enhanced ductility and toughness in fish scales 
(Yang et al., 2019). In the spirit of bio-mimicry, Zaheri et al. (2018) 
designed a discontinuous fiber helicoidally sample to gain further 
insight into the phenomenon. Tensile experiments performed on such 
samples showed features of strain stiffening consistent with large 
deformation effects. However, detailed modeling accounting for fiber 
rotation and matrix constitutive response are needed to decouple the 
two effects and gain insight into the potential of discontinuous fiber 
helicoidally structures. Among the few models reported in the literature 
for related phenomenon, we can mention the work by Yang et al. (2017), 
which formulated a theoretical framework to predict the rotation of 
two-dimensional hard particles in a soft matrix. However, such model is 
limited to particles with small aspect ratios and does not incorporate the 
anisotropic behavior typically found in composite materials. Besides, 
their model does not consider the rotation of particles in a multilayer 
laminate. Accordingly, the study of fiber reorientation in laminates with 

Fig. 1. Biological architectures found in 
nature: (a) Helicoid architecture of the 
mantis shrimp dactyl club, and (b) regular 
helicoid architecture. (c) Biological brick- 
and-mortar architecture of the red abalone, 
and (d) regular brick-and-mortar architec-
ture. (e) The discontinuous fiber helicoid 
architecture (DFH), and (f) Dimensions of 
the DFH architecture. (g) Undeformed single 
layer with misorientation θ with respect to 
the loading axis. (h) Schematic of fiber 
rotation Δθc due to stretch only. Photo 
credits (a) courtesy of S. Baron with adapted 
size, under CC by 2.0(left) and adapted from 
(Grunenfelder et al., 2014) (right); (c) 
courtesy of Southwest Fisheries Science 
Center, NOAA Fisheries Service (left) and 
adapted from (Barthelat et al., 2007) (right).   
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distinct misaligned angle requires different theoretical and computa-
tional treatments. 

As illustrated in Fig. 1(e), the DFH architecture consists of aligned 
and staggered fibers (in the x-y plane), in which each lamina presents a 
fiber rotation by a constant pitch angle, θh, from the preceding lamina 
(along the z-axis). For example, for θh ¼ 30� the lay-up sequence is [0/ 
30/60/90/120/150], where the angle is defined between the fiber and 
the x-axis. Once the lamina achieves 180� rotation, with respect to 
laminae with misorientation 0� , a full period in the helicoid architecture 
is achieved. The number of laminae needed to complete a 180� rotation 
is n¼ D=d ¼ 180�=θh, where D is the period of the DFH architecture, also 
called pitch distance (Guarín-Zapata et al., 2015), Fig. 1(e). d is the 
height of one lamina, composed of fiber height, w, and the separation 
between two fibers, t, such as d ¼ w þ t, as shown in Fig. 1(f). Employing 
this geometry and Finite Element Analysis (FEA), we investigate the 
fiber rotation and matrix response, for several matrix constitutive laws, 
to elucidate the origin of strain stiffening in the DFH architecture as a 
function of imposed deformation (Zaheri et al., 2018). Both nonlinear 
constitutive response and finite deformations are investigated. To 
decouple the effects of fiber rotation, Fig. 1(g) and (h), and matrix 
constitutive response on strain stiffening, linear elastic, hyper-elastic, 
and elasto-plastic matrix constitutive responses are considered. To 
decouple the composite lay-up effects on fiber rotation upon uniaxial 
tensile, we introduce two ancillary architectures: discontinuous single 
lamina (DSL) and discontinuous mono-balanced (DMB). We expect this 
analysis to provide information on interlaminar constrains in terms of 
strain and stress, a key characteristic in composites. The computational 
study will provide information on strain stiffening measured in the DFH 
architecture, and insights for the design of bio-inspired composites, with 
the DFH architecture, exhibiting strain stiffening. 

2. Methods 

2.1. Geometry of 3D printed discontinuous fiber helicoids 

The discontinuous fiber helicoid (DFH) composites are 3D printed 
with two materials. A stiff polymer (VeroWhite (Stratasys Ltd., 2018)) 
for the fibers and soft polymer, rubber like (nearly incompressible), 
materials (TangoPlus (Stratasys Ltd., 2019)) for the matrix, see section 
S1 of the supplemental material (SI), following Zaheri et al. (2018). 
VeroWhite material is more than 3 order of magnitude stiffer than the 
TangoPlus. On the other hand, TangoPlus is brittle under tension and 
shear deformation and it shows anisotropic behavior, due to the printing 
process. The fibers are printed with a square cross-section area to 
maximize resolution of the 3D printer. The stiff fibers have a length, l, 
and a square cross-section with width, w (Fig. 1(f)). We choose a fiber 
aspect ratio l=w ¼ 20 for all the cases and a sample gauge length to fiber 
length L=l ¼ 2.8 for L=W ¼ 2, which is the aspect ratio of the gauge, see 
Fig. 1(g). The soft matrix separates the fibers in all three dimensions by a 
thickness t, as illustrated in Fig. 1(f). The ratio of matrix thickness over 
the fiber width is also kept constant t=w ¼ 0.8 for all the cases. As such, 
the fiber volume fraction is 29.7%. Further analysis indicates that ma-
terials with this fiber volume fraction are sufficient to be considered as a 
homogeneous anisotropic behavior in each lamina. Within the plane of a 
single lamina, the fiber and matrix form a brick and mortar structure, 
where fibers are off-set from neighboring rows by a distance ðlþtÞ= 2 to 
provide optimum staggering for shear transfer, Fig. 1 (f). This results in 
maximum in-plane stiffness in the longitudinal direction (Sakhavand 
and Shahsavari, 2015; Wei et al., 2012; Zhang et al., 2015, 2010). Each 
lamina is defined by its misorientation, θi, with respect to the loading 
direction (x-direction). Here, the subscript “i” refers to the misorienta-
tion in a given lamina, Fig. 1(g). For example, θ30 represents the lamina 
with a misorientation of 30� with respect to the loading direction. Any 
fiber reorientation upon deformation is labeled as Δθc, as shown in Fig. 1 
(h). Further details of specimens and tests are given in (Zaheri et al., 
2018). 

2.2. FEA model 

The FEA model of 3D printed dog-bone samples is depicted in Fig. S1. 
Geometries are meshed using first order tetrahedral elements (C3D4). 
The mesh size is selected such that there is mesh convergence (See sec-
tion S2). Finite deformation is included in all simulations. The fiber 
material is modeled as linear elastic with a Young’s modulus E ¼ 1.108 
GPa and Poisson’s ratio v ¼ 0.3. The matrix is modeled as a hyperelastic 
material with a 2nd order polynomial model (Rivlin and Saunders, 
1951). The model parameters are obtained by fitting matrix stress-strain 
experimental results in tensile and shear deformation, see section S1. In a 
subset of simulations, the matrix is also considered to be linear elastic 
with a Young’s modulus E ¼ 0.337 MPa and elasto-plastic with a bilinear 
law with a hardening modulus of 0.03 MPa and a yielding stress of 
0.014 MPa. 

Most of the numerical simulations are conducted on specimens with 
finite size and free-edge boundary conditions on the faces with normal 
vectors in the y- and z-directions to replicate the conditions during the 
experiments, Fig. S1 and Fig. S3(c). However, to assess the applicability 
of these results to architectures with a large number of laminae in the z- 
direction (number of pitches, N→∞), a set of simulations is carried out 
with periodic boundary conditions on the planes perpendicular to the z- 
axis. Faces with vector normal in the direction of the y-axis remain free. 
Hence, we denote this configuration by free-periodic boundary condi-
tion, see Fig. S3(d). A uniform displacement is prescribed in the x-di-
rection, on the loading faces of the specimen, while the faces of the tabs 
normal to y- and z-axes are fixed in the y- and z-directions, Figs. S3(c–d), 
for both free-free and free-periodic boundary conditions. 

Fiber reorientation in each individual lamina is directly extracted 
from the FEA by computing the average rigid body rotation in each fiber. 
The simulations reveal that fiber rotation induced by stretch only, Δθc, is 
hindered by the rotation of the gauge section. Thus, in addition to the 
rotation that arises through stretching, rotation of the gauge section of 
the specimen (warping effect) also contributes to the apparent rotation. 
The latter contribution is removed since this is a geometric effect related 
to the fiber initial orientation, dimensions of the specimen, boundary 
condition, and the number of periodic layers. In the calculations, the 
warping effect is removed by polar decomposition of the deformation 
gradient. Details of the calculation process are provided in Section S3. 

2.3. Analytical model 

While limited to small strains, analytic methods can be used to obtain 
homogenized properties for both single oriented lamina and laminate 
composed of multiple laminae. Here, we employ the Halpin-Tsai equa-
tion (Halpin, 1969; Tucker and Liang, 1999) to predict the elastic 
modulus of each layer with staggered-discontinuous fibers. Since 
Halpin-Tsai requires scalar quantities for the moduli, inputs are obtained 
through linearization of the matrix material under uniaxial tensile. The 
Halpin-Tsai equation for moduli is give as: 

P
Pm
¼

1þ ξηvf

1 � ηvf
with η¼

�
Pf
�

Pm
�
� 1

�
Pf
�

Pm
�
þ ξ

; (1)  

where, P represents one of the homogenized composite moduli, such as 
E11, E22 and G12. Pf and Pm are the fiber and matrix moduli, respectively. 
ξ is an empirically derived factor that depends on the boundary condi-
tions. For the quantities E11, E22 and G12, the factor ξ takes the values: 
2ðl =wÞ, 2 and 1, respectively. Classical Laminate Plate Theory (CLPT) 
(Daniel and Ishai, 1994; Ramirez, 1999) is used for predicting the 
in-plane stiffness of a complete laminate. 
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3. Results and discussion 

3.1. Stress-strain response of hybrid helicoids 

The experimental stress-strain response of the 3D printed DFH ar-
chitecture with various pitch angles θh shows a complex behavior as it 
can be observed in a typical stress-strain response in Fig. 2(a) (Case θh ¼

30�). The complete set of experimental data and FEA data for θh in the 
range 30�-90� is given in section S4. The stress-strain response for all 
DFH architectures can be divided into 3 distinct regions, Fig. 2(a). Re-
gion I is defined by an initial elastic response with modulus Eini. Region II 
shows a drop in the tangent modulus associated with fiber-matrix 
debonding at the fiber ends, followed by a hardening response. In this 
region a minimum and maximum tangent modulus can be defined, Emin 
and Emax, respectively, details described in section S5. Likewise, we can 
define a stiffening parameter defined as the ratio of Γ ¼ Emax= Emin. 

Region III describes the material response as it accumulates further 
damage followed by final failure (Zaheri et al., 2018). 

3.2. Moduli and strain stiffening 

In our FEA, Regions I and II are independently considered to study 
the behavior of laminates without and with local discontinuity in the 
matrix between fiber ends, see section S6. The purpose of the first set of 
simulations is designed to capture the initial modulus Eini (Region I with 
intact matrix), while the second set of simulations includes discontinu-
ities at the ends of the fibers (debonded fiber-matrix interface) to capture 
the stress-strain behavior in Region II. The second set of models is also 
employed to compute the stiffening parameter Γ. Specifically, in the FEA 
with discontinuous matrix (Region II), the elastic modulus after accu-
mulated deformation is defined by Emax and the elastic modulus at the 
beginning of the stress and strain curve is defined by Ei. Hence, Γiof ¼

Fig. 2. (a) Experimental stress and 
strain curve of DFH θh ¼ 30� with L=
W ¼ 2 and definition of elastic modulus 
in three regions. (b) Initial elastic 
modulus, Eini, normalized by the elastic 
modulus of the lamina with misorien-
tation 0� with respect to the loading 
direction, E180, as a function of pitch 
angle, θh. (c) Contour plot of maximum 
principal logarithmic strain, εln, as pre-
dicted by FEA, lamina by lamina. (d) 
FEA predictions and experimental mea-
surements (DIC) of maximum principal 
logarithmic strain, εln, in the θ30 lamina 
of the DFH with pitch θh ¼ 30�. (e) Γ as 
a function of θh calculated from FEA 
prediction with the hyperelastic matrix 
when applied strain, ε, is 15%, 
compared with Γ calculated from 
experimental stress and strain curves 
(Zaheri et al., 2018). (f) Fiber reor-
ientation due to stretch only, denoted by 
Δθc, as a function of applied strain, ε, of 
individual laminae.   
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Emax=Ei defines the stiffness ratio, which is a measure of strain stiffening. 
Further details on these parameters can be found in section S5 with the 
difference between Γiof and Γ depicted in Fig. S8(a). The longitudinal 
elastic modulus of lamina with misorientation 0� , θ0 or θ180, denoted by 
E180, are obtained following the Halpin-Tsai equation. Then using the 
CLPT model, the laminate properties are estimated as depicted in Fig. 2 
(b). The employed constituent properties for the fiber are E ¼ 1108 
MPa, v ¼ 0.3 and for the matrix E ¼ 0.337 MPa, v ¼ 0.48. The model 
predicted a lamina longitudinal elastic modulus of 6.07 MPa and a 
transverse modulus of 0.76 MPa. 

The analytical, experimental, and FEA predictions of Eini are in close 
agreement, as it can be observed in Fig. 2(b). Since the FEA analysis uses 
a hyperelastic model for the matrix, while the analytical predictions are 
based on linear elasticity, the agreement is consistent with the isotropic 
constitutive model. Unlike θh ¼ 0�, the DFH architectures with different 
pitch angles, θh, provide more compliant in-plane behavior. Note that 
some differences between theory/FEA and experimental measurements 
are apparent when θh is smaller than 45�. This maybe partially induced 
by the distinct components of extensional-bending coupling in the tested 
asymmetric laminate. 

The maximum logarithmic strain distributions for the DFH with θh ¼

30� obtained from the FEA are plotted lamina-by-lamina in Fig. 2(c). We 
can observe that the logarithmic strain is distributed evenly in the ma-
trix along the gauge section, which implies finite sample size effects can 
be neglected. According to the strain distribution at the top surface of 
the DFH θh ¼ 30� , both FEA and experimental results display large 
strains in the region between fiber ends (red color), Fig. 2(d). Less 
prominent matrix strains between parallel fibers are also observed (blue 
color), up to 25% lower than the matrix strains between fiber ends. 

3.3. Mechanisms giving rise to strain stiffening 

As discussed before, region II of the stress-strain curve is character-
ized by a strain stiffening behavior, i.e., Γ > 1. A comparison between 
experiments and FEA predictions is shown in Fig. 2(e). We note that the 
FEA results exhibit a similar trend as that measured in experiments, both 
achieving a maximum value for θh ¼ 60�, although the strain stiffening 
is less prominent in FEA since the 3D printed matrix material employed 
in the experiments exhibits a slightly different behavior at large strains. 
We surmise that the difference between FEA and experiments in terms of 
absolute values of Γ is due to the 3D printed material for matrix. While 
our model assumes isotropic behavior, the 3D printed material is 
anisotropic. The detailed explanation and comparison between experi-
ment and FEA is addressed in section S1 (See. Fig. S2 for example). Be-
sides, the reason why θh ¼ 60� shows the largest difference on Γ can be 
explained by the fact that the individual layer θ ¼ 60� in θh ¼ 60�

undergoes significantly more global transverse contraction than the in-
dividual layer θ ¼ 60� in θh ¼ 30� , for instance. Therefore, there is 
more local shear deformation between fibers in the matrix leading to a 
larger strain stiffening. On the other hand, a likely source for such 
stiffening is fiber reorientation towards the loading direction, as hy-
pothesized by Zimmermann et al. (2013). Hence, we quantify fiber 
reorientation caused by stretching, Δθc, in the DFH with θh ¼ 30� by 
tracking the coordinate of the individual fibers in each lamina in their 
undeformed and deformed configurations. The averaged fiber reor-
ientation values as a function of strain and fiber orientation in each 
lamina are plotted in Fig. 2(f), where positive value indicating that fibers 
rotating toward the loading direction. It is observed that Δθc of laminae 
with small misorientation, such as θ30 and θ150 ¼ θ� 30, shows higher 
values than the laminae with larger misorientation, such as θ60 and 
θ120 ¼ θ� 60. Moreover, the Δθc for fibers along θ0 and θ90 is close to 0 as 
expected. Indeed, the motion of fibers along θ0 and θ90 is translation in 
the loading direction despite the significant mismatch of mechanical 
properties between fiber and matrix. Plots of Δθc as a function of applied 
strain for the DFH architecture with various fiber to matrix moduli 

ratios, in the range of 0.01–3000, are given in section S7. Clearly, softer 
matrices result in a more prominent reorientation of the fibers towards 
the loading direction. 

While our FEA shows the presence of fiber reorientation in each 
lamina of the DFH architecture, the effects of the composite lay-up 
sequence, the occurrence order of lamina misorientation from bottom 
to top in one laminate, and matrix constitutive response need to be fully 
understood to ascertain its impact. For example, a hyperelastic matrix 
response may also lead to strain hardening. Likewise, it is useful to 
compare the DFH architecture with other architectures such as discon-
tinuous single lamina (DSL) and discontinuous mono-balanced laminate 
(DMB). The DSL architecture simply comprises one lamina with one 
misorientation with respect to the loading axis, and the DMB architec-
ture consists of balanced pairs of laminae, where every positive orien-
tation is adjacent to its negative counterpart, shown in Fig. 3(a). In a 
sense, the DSL architecture configuration avoids interlaminate in-
compatibilities in terms of deformation. Conversely, the DMB architec-
ture exhibits a simplified lay-up sequence, with one absolute 
misorientation (see Fig. 3(a)). By contrast, the DFH architecture presents 
a mixture of different misorientations. Simply stated, the DSL architec-
ture provides an example of unconstrained rotational behavior, while 
the DMB architecture exhibits a symmetrically constrained configura-
tion, which can be compared to rotations observed in the DFH archi-
tecture. To some extent, this allows us to extract information about the 
fiber reorientation effect as a function of lay-up sequence. 

3.3.1. Role of fiber reorientation 
We start by comparing analytic predictions of Eini for the DSL and 

DMB architectures. As depicted in Fig. 3(b), both architectures exhibit 
the same Eini when θi ¼ 0� and for a range of θi between 56� and 90� . 
The DMB architecture exhibits a greater stiffness than the DSL archi-
tecture with misorientations between 0� and 56�. This is due to the 
reduced contribution of the shear deformation due to the restriction 
imposed by the adjacent laminae misorientation in the DMB 
architecture. 

Another interesting observation, which could influence the contri-
bution of fiber reorientation to strain stiffening, is that the relation be-
tween lamina misorientation, θs, and Eini is not linear, as shown in Fig. 3 
(b). For instance, even if fibers in θs ¼ 60� rotate 20� toward the loading 
direction, reoriented at 40� , the stiffening effect would be much less 
than the stiffening effect of θs ¼ 30� rotating 10� toward the loading 
direction. FEA are included in Fig. 3(b) for comparison purposes. As it 
can be observed, the FEA predictions are in good agreement with the 
analytical results. For the DMB case, the free-periodic boundary condi-
tion makes only a small difference on Eini with respect to DMB archi-
tecture with free-free boundary. 

We next analyze fiber reorientation and define fibers rotating toward 
the loading direction as positive and away as negative, as illustrated in 
Fig. 4(a) and (b). Fig. 4(c) shows the stretching-induced rotation, Δθc, in 
the DFH architecture alongside rotation in the DMB and DSL architec-
tures. Each point in the figure represents the mean value of Δθc in the 
corresponding lamina and the error bar is defined by the standard de-
viation among fibers in each lamina. It is observed that the Δθc values of 
each lamina in the DFH architecture are smaller than the ones obtained 
with the DSLs, up to 29.5% difference. Thus, the fibers in one lamina 
without constraint from other laminae have more freedom to rotate 
under uniaxial tensile. The DMB architecture with θb ¼ 30� , θb ¼ 45� , 
and θb ¼ 60� shows generally higher Δθc values than those in the DFH 
architecture with θh ¼ 30� , θh ¼ 45� , and θh ¼ 60� . The maximum 
difference in Δθc between the DMB and the DFH architectures is 
observed between the individual layer θ45 in θb ¼ 45� and θh ¼ 45� , 
which is 28.6%. 

Different lay-up sequences promote distinct in-plane mechanical 
properties, such as Poisson’s ratio and coupling coefficients, which in 
turn influences deformation of each lamina and reorientation of fibers 
embedded in the matrix. Here we discuss the histogram of Δθc in 
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different architectures, see Fig. 4(d), which depicts the difference of 
distribution of fiber reorientation among distinct laminates. It is 
observed that the distribution of Δθc in θs ¼ 30� is concentrated be-
tween 5� and 6� , while fibers along θ30 of the DFH architecture with 
θh ¼ 30� shows its Δθc values between 3� and 5� . However, Δθc in the 
DMB architecture with θb ¼ 30� exhibits increasing fiber amounts with 
growing Δθc, which could be partially explained by the specific 
contraction that DMB architecture undergoes. 

The direct correlation between fiber reorientation and stiffness 
variation is obtained by using a semi-analytical method. Ei can be ob-
tained by considering the lay-up sequence, before deformation, in the 
CLPT model, and then calculated as 1=hS11, where h is the height of the 
laminate and S11 is the in-plane component of compliance matrix in the 
first row and first column. An averaged fiber reorientation can be ob-
tained by computing the angle between fiber orientations before and 
after deformation from the FEA. Next, the new deformed lay-up 
sequence is calculated by using the initial fiber orientation to subtract 
the averaged fiber reorientation values, when the initial fiber orienta-
tion is less than or equal to 90� .When the initial fiber orientation is 
larger than 90� , we consider sum of the initial fiber orientation and fiber 
reorientation values as new deformed fiber orientation. Emax can then be 
computed by the new deformed lay-up sequence combined with CLPT. 
The calculation procedure is the same as the one used for Ei. Finally, the 
values of Γiof of θb ¼ 30� , 60� and θs ¼ 0� , 30 , 60� , 90� (associated 
laminae of the DFH θh ¼ 30� ) are shown in Fig. 4(e) in comparison with 
DFH architecture with θh ¼ 30� . 

The bar chart shows that DMB θb ¼ 30� and DSL θs ¼ 30� stiffen 
more than the DFH architecture with θh ¼ 30� , up to 30.4%, under the 
same uniaxial tensile stretch. Other laminates, θs ¼ 0� , 60� , 90� and 
θb ¼ 60� , show negligible stiffening, compared with θs ¼ 30� and θb ¼

30� . This could be explained by the trends shown in Fig. 3(b), in which 
no strain stiffening is expected once θs is larger than 56� , unless very 
large Δθc occur. Thus, based on these observation, it is possible to 
conclude that the reason why the DFH architecture with θh ¼ 30� ex-
hibits lower stiffening (Γiof ) is because it shows smaller values of Δθc in 
each lamina, when compared to corresponding lamina misorientation in 
DSL (θs ¼ 30� and θs ¼ 60� ) and DMB (θb ¼ 30� and θb ¼ 60� ) 
architectures. 

3.3.2. Explanation on fiber reorientation based on mechanism 
We now look into potential mechanistic explanations on fiber reor-

ientation and its contribution to strain stiffening based on the aniso-
tropic behavior of the different laminae and their individual in-plane 
shear and transverse contraction deformation induced by the uniaxial 
load. Using the polar decomposition method, an analytical expression 
for Δθc as a function of in-plane components of the stretch tensor, U, can 
be derived. Consider a unit vector describing fibers in the undeformed 

configuration with orientation, θ, namely, v0 ¼ ðcosθ; sinθ). If v is the 
vector in the deformed configuration, v and v0 are related by v ¼ U⋅v0 

(Reddy, 2013) with the angle between them given by cosΔθc ¼
v⋅v0
jvjjv0 j

, or 

Δθc¼ arccos

8
><

>:

�
cos2θUxx þ sin2θUyy þ 2sinθcosθUxy

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Uxxcosθ þ Uxysinθ

�2
þ
�
Uxycosθ þ Uyysinθ

�2
q

9
>=

>;
(2)  

where Uxx, Uyy; and Uxy are the in-plane components of the U. A close 
examination of Fig. S5(b) reveals that the theoretical prediction of Δθc is 
in close agreement with the results obtained by FEA and those calculated 
from whole laminate deformations. A color map of Δθc as a function of 
the individual stretch tensor components can be constructed using Eq. 
(2), as shown in Fig. 5(a). Moreover, the Δθc of each individual lamina 
for various architectures can be analyzed based on the components of 
the stretch tensor obtained from simulations. For example, the Δθc of the 
individual lamina θ30 in the DMB θb ¼ 30� (shown as a red dot in left- 
top corner of the color map in Fig. 5(a)) implies that transverse 
contraction, rather than in-plane shear deformation, Uxy, is the one 
promoting fiber reorientation in the architecture. This result is consis-
tent with the prediction of the CLPT model for balanced architecture, in 
which the extensional-shear coupling components are zero, i.e., no in- 
plane shear deformation due to uniaxial tension(Carlsson et al., 2014). 
By contrast, the Δθc of the DSL with θs ¼ 30� (shown as a black dot in 
Fig. 5(a)) primarily results from Uxy, 8.15 times higher than the Uxy 

value of θ30 in DMB θb ¼ 30� , and moderately results from transverse 
contraction, Uyy, 42.2% lower than the one of DMB architecture. Inter-
estingly, when comparing the DMB architecture to the DSL θs ¼ 30� , the 
former exhibits a 93.4% higher value of the effective Poisson’s ratio, vxy, 
see Fig. 5(b). The DFH architecture exhibits a behavior in which both 
in-plane shear deformation and transverse contraction are smaller, blue 
dot in Fig. 5(a). Less shear deformation than corresponding DSL archi-
tectures is because in the DFH architecture, for each lamina with 
misorientation θ; there is always a lamina with misorientation � θ. 
Accordingly, at the laminate level, the DFH architecture also satisfies the 
balanced laminate condition, which means no in-plane shear deforma-
tion due to uniaxial tension. On the other hand, unlike the DMB archi-
tecture composed of multiple laminae with one absolute value of 
misorientation, indicating compatible properties lamina by lamina, the 
DFH architecture is composed of multiple laminae with different abso-
lute values of misorientation, which means incompatible properties 
lamina by lamina. Therefore, the DFH architecture cannot reach as high 
transverse contraction as the DMB architecture, and then the individual 
lamina with different θ in the DFH architecture will rotate less than the 
corresponding DSL and DMB architectures, see Fig. 5(b) and Fig. S7. The 
global deformation of the DFH, DMB, and DSL architectures is illustrated 
in Fig. 5(c–f) and the deformation magnitudes of the different 

Fig. 3. (a) DMB architecture with absolute misorientation θb. Comparison of (b) Normalized FEA and analytical results of DSL and DMB architectures, all with linear 
elastic matrix. 
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Fig. 4. (a)–(b) Definition of direction on fibers rotation. Positive means fibers rotate toward the loading axis, whereas negative means fibers rotate away from the 
loading direction. The x-axis is the loading direction. 10 and 20 axes are local axes after deformation. (c) Fiber reorientation due to stretch only, Δθc, of individual 
lamina in DFH/DMB/DSL architectures under 10% local uniaxial strain (15% ε). (d) Histogram of Δθc in lamina θ30 (e) Semi-analytical Γiof calculated based on Δθc in 
DFH θh ¼ 30� /DMB/DSL architectures under 10% local uniaxial strain (15% ε). 
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architectures, under the same uniaxial tensile strain, are tabulated in 
Table S1. 

3.3.3. Role of matrix mechanical behavior 
In the previous section, we studied the correlation between Δθc and 

strain stiffening, Γiof , by using a semi-analytical method and examining 
the Δθc distribution computed for different architectures. In this section, 
we investigate the effect of matrix constitutive behavior on strain stiff-
ening. We begin by analyzing a linear elastic matrix and conclude with 
the analysis of an elasto-plastic matrix. 

In analyzing the effect of a linear elastic matrix, a maximum local 
true strain εt ¼ 4% is used for comparing various laminates. The local 
strain is based on the deformation at two ends of the gauge region, 
ugauge=Lgauge whereas the global(applied) strain, ε, is calculated by the 
applied deformation at the end of dog-bone sample, uapplied= Lgauge. A 
free-periodic boundary condition is applied to all FEA in this section. 
Moreover, it is important to note that the fiber reorientation values for 
the DFH and the DMB architectures with linear elastic matrix are the 
same as the fiber reorientation values computed for the DFH and the 
DMB architectures with hyperelastic matrix, see section S8. 

The normalized elastic modulus, along various orientations, for the 
θh ¼ 30� and θb ¼ 30� architectures, at εt ¼ 1% ðELE1%Þ, and at 4% 
(ELE4%Þ, are plotted in Fig. 6(a). By contrast, FEA and analytical pre-
dictions are in close agreement for the DMB architectures, 3.95% dif-
ference for θb ¼ 30 � in both longitudinal and transverse directions. The 
normalized elastic modulus for the DFH architecture with θh ¼ 30� , for 
both ELE1%=E180 and ELE4%=E180 are smaller than the analytical predic-
tion. This is the case, because in the FEA, the DFH architecture is 

modeled by discontinuous fibers, resulting in localized failure (fiber 
end-matrix debonding). As expected, the DFH architecture presents 
close to in-plane isotropic behavior on elastic modulus, whereas the 
ELE1% of θb ¼ 30� is relatively large only in the direction close to the 
initial lamina misorientation 30� . The value of ELE1% of the θb ¼ 30�
along the longitudinal direction is three times and a half over the value 
of ELE1% in transverse direction. 

We next examine Γiofð4%Þ, where Γiofð4%Þ is defined as the strain 
stiffening of architecture finally deformed under 4% of εt in uniaxial 
direction (subscript “4%” means 4% of εt), and ΓiofðεtÞ ¼ EmaxðεtÞ=Ei, 
value Emax as a function of εt over Ei. In Fig. 6(c), although θb ¼ 45�

shows the maximum Δθc and strain stiffening Γiofð4%Þ ¼ 1.16, compared 
with θb ¼ 30� and θh ¼ 30� , the ELE1% of θb ¼ 45� is only 18.8% of the 
value of θh ¼ 30� both in the longitudinal and transverse directions. 
Although a small stress softening value (Γiofð4%Þ ¼ 0:92) is exhibited by 
the DFH architecture, isotropic stiffness is achieved. 

It is important to understand if the specific lay-up sequence of the 
DFH architecture can influence Δθc and strain stiffening and thus, we 
consider a disorder laminate θr ¼ [30/150/60/120/0/90/30], which 
contains the same associated laminae but different lay-up sequence from 
θh ¼ 30� . θr is representative of other alternative laminates with 
different lay-up sequences, since Ei calculated by CLPT is independent 
on the lay-up sequence, shown in section S9. In Fig. 6(b), the elastic 
modulus of disorder laminate θr before and after deformation, compared 
with θh ¼ 30� , is shown. It is observed that the values of Ei of θr and θh ¼

30� show close agreement on both analytical prediction and FEA. 
However, the Γiofð4%Þ of θr due to difference on fiber reorientation is 
1.44% higher than the value of θh ¼ 30� , as depicted in Fig. 6(d). This 

Fig. 5. (a) Color map of Δθc as a function of Uxy and Uyy, where the red dot represents for the lamina θ30 in DMB θb ¼ 30� , the black dot represents for the lamina 
DSL θs ¼ 30� , and the blue dot represents for the lamina θ30 in DFH θh ¼ 30� (b) Poisson’s ratio vxy as a function of θs, θb and θh (c) Configuration of individual 
lamina θ30 in DFH θh ¼ 30� (d) Configuration of individual lamina θ30 in DMB θb ¼ 30� (e) Configuration of individual lamina θ60 in DFH θh ¼ 30� (f) Configuration 
of individual lamina θ30 in DSL θs ¼ 30� , before (light grey) and after deformation (darker grey for matrix and blue for fibers). 
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means that different lay-up sequence does influence the stiffness varia-
tion caused by fiber reorientation. However, compared with the strain 
stiffening ΓiofðεtÞ of the DMB θb ¼ 30� , Fig. 6(d), the difference between 
θr and DFH θh ¼ 30� is negligible. 

The above results show that the strain stiffening of the DFH archi-
tecture in the experimental system is mostly the result of the hypere-
lastic properties of the matrix, since in this section we show that fiber 
reorientation in the DFH architecture is constrained by the specific lay- 
up sequence and therefore strain stiffening is not predicted, which is 
consistent with the explanation in section 3.3.2 and the analytical pre-
diction in Fig. 4(e). Moreover, we investigate the effect of an elasto- 
plastic matrix to replace the linear elastic matrix for the DFH architec-
ture with θh ¼ 30� , large strains, and found no strain stiffening either, 
see section S10. 

4. Concluding remarks 

This work examines the mechanical properties of a hybrid archi-
tecture, the Discontinuous Fiber Helicoid (DFH), which takes inspiration 
from a regular helicoid composite and a ‘brick and mortar’ architecture. 
The combination of these two motifs gives rise to some unique com-
posite mechanics. Like the regular helicoid, each unidirectional lamina 
is highly anisotropic due to the alignment of the fibers. However, the 
elastic behavior of whole helicoidal laminate is transversely isotropic. 

The properties of DFH architecture are a function of the geometry 
and the property of its constituents. Among the dominant geometrical 
features, we can mention pitch angle, θh. Constitutive properties, such as 
the fiber to matrix stiffness ratio, as well as the matrix nonlinear 
behavior, are relevant as they relate to strain stiffening and overall 
failure. To deconvolve the various effects, we examined various archi-
tectures, namely DFH/DMB/DSL, to gain insights into the contribution 

Fig. 6. FEA predictions on elastic modulus of laminates with linear elastic matrix deformed within 1% local true strain, εt , (ELE1%) and at ~4% εt (ELE4%). Analytical 
predictions are based on the CLPT model. (a) Comparison among θh ¼ 30� , θb ¼ 30� and θb ¼ 45� (b) Comparison between θh ¼ 30� and the disorder architecture 
with lay-up sequence [30/150/60/120/0/90/30] (c) Elastic modulus as a function of local true strain, εt . (d) Stiffening parameter Γiofðεt Þ as a function of εt . 
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of deformation to fiber reorientation, Δθc, as it relates to lamina 
misorientation with respect to the loading direction and lay-up 
sequence.  

� We found that the DFH architecture exhibits less in-plane shear 
deformation and less transverse contraction leading to smaller values 
of fiber reorientation, Δθc, compared with the DMB and DSL archi-
tectures. We compared and quantified Δθc in individual laminae from 
different architectures. For instance, we found that the individual 
lamina θ30 of the DFH θh ¼ 30� exhibits up to 29.5% lower Δθc than 
that found in the DSL θs ¼ 30� upon 15% strain. On the other hand, 
the θ45 lamina in the DMB architecture exhibits 28.6% higher value 
of Δθc than the θ45 lamina in the DFH with θh ¼ 45� . In fact, the DFH 
architecture, due to its overall balanced lay-up sequence, exhibits 
smaller in-plane shear deformation than the DSL architecture and 
less contraction in the transverse direction than the DMB architec-
ture. The DMB θb ¼ 30� exhibits a 93.4% higher vxy than the DSL 
architecture with θs ¼ 30� . This is due to its compatible mechanical 
properties among balanced laminae. 
� The analysis reported in this study revealed that the DFH architec-

ture, with a linear elastic or elasto-plastic matrix with small plastic 
hardening, shows negligible strain stiffening, compared with the 
DMB architecture, under uniaxial tensile loading, whereas the DMB 
architecture shows superior strain stiffening compared with DFH 
architecture (up to 16% under 4% local εt and 33.6% under 10% 
local εt). Furthermore, evidence that no strain stiffening is obtained 
from our FEA results with linear elastic matrix and very small values 
obtained from plate theory indicates that the strain stiffening 
observed in 3D printed samples is more likely caused by the aniso-
tropic hyperelastic constitutive response of the matrix.  
� Although the DFH architecture and the disorder laminates show the 

same elastic modulus before deformation, their fiber reorientation 
and strain stiffening values are slightly different after the same ten-
sile strain (4% local εt). This observation confirms that the lay-up 
sequence influences the deformation in each lamina through the 
thickness and, thus, has an impact on the fiber reorientation 
behavior. 

In closing, we have provided a rigorous analytical, experimental, and 
computational analysis of deformation and strain stiffening for a variety 
of discontinues fiber architectures, which should be valuable for the 
design of composite materials in which tailoring of constitutive 
behavior, following some inspiration from these natural materials that 
can lead to a better mechanical performance. The DFH architecture 
exhibits some interesting mechanical behaviors, which can be employed 
in some specific applications. For example, helicoidal composites with 
compliant matrix and stiffer fibers can find applications where isotropic 
elastic properties are required under general and relatively low loads, 
but higher strength and toughness, along the loading direction, under 
higher loads. 
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