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ABSTRACT

Failure mechanisms in ceramics are investigated by means of bar impact experiments and numerical
simulations of the wave propagation event. Stress histories are measured by embedding manganin stress
gauges in the ceramic bars. The fracture event is examined by high speed photography. A violent radial
expansion, in a region close to the impact surface, followed by a cloud of debris is observed. Numerical
simulations of the inelastic wave propagation event are performed with a multiple-plane microcracking
model. The simulations show that when the impact stress exceeds a material threshold, the stress wave in
the bar has a relatively short duration which is controlled by the rate of unconfined compressive damage.
A nonzero inelastic strain rate at the wave front is required in the simulations to properly capture the
measured stress attenuation with propagation distance. This feature is related to a heterogeneous material
microstructure which is a common occurrence in ceramics. Furthermore, the simulations predict a radial
expansion of the bar as a result of not only compressive but also tensile damage. The radial velocity
histories on the bar surface are functions of wave propagation distance and damage rate. Tensile damage
is induced by stress release from the rod surface and is restricted to the bar core, due to wave focusing, and
to the bar free end. In the latest case, reflection of the compressive pulse produces bar spallation. The two
dimensional distribution of tensile and compressive damage is assessed by means of contour plots of
volumetric strain and the second invariant of the inelastic strain tensor.

1. INTRODUCTION

Recently, significant improvements have been made towards understanding dynamic
compressive strength of brittle materials (Rosenberg er al., 1988; Kipp and Grady,
1989 ; Espinosa and Clifton, 1991 ; Espinosa et al., 1992 Brar and Bless, 1992 ; Grady
and Wise. 1993). Nonetheless, uncertainties about the dominant failure mechanisms
as a function of stress states still remain. Espinosa et al. (1992) have shown that
aluminas containing a glassy phase at grain boundaries can deform inelastically by
flow of these thin glass layers at compressive stress levels well below the Hugoniot
elastic limit of the material. The role of microstructural heterogeneities in the dynamic
behavior of aluminas has also been pointed out by Longy and Cagnoux (1989), and
Yeshurun et al. (1987). The material microstructure, porosity, grain size, and the
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fraction and type of second phase, appear to play an even more critical role in the
dynamic compressive strength of TiB, ceramics (Winkler and Stilp, 1992 ; Grady and
Wise, 1993). A double-yield process has been observed in this material, although the
mechanisms responsible for this behavior remain undetermined.

In an effort to investigate more general multiaxial loading conditions, Brar and
Bless (1992), and Grady and Wise (1993) performed unconfined and confined ceramic
bar experiments. The objective of these experiments is to extend uniaxial strain
deformation states imposed in plate impact experiments. The possibility of generating
a variety of multiaxial deformation states appears to be very relevant in the charac-
terization of failure mechanisms in ceramics and ceramic composites. Espinosa (1994)
has shown that the dramatic softening observed in these materials under pressure-
shear states can be explained by accumulation of inelastic strain in a single orientation.

Despite the availability of experimental data documenting the brittle failure of
ceramics, very few quantitative investigations have been performed addressing the
role of microstructural features in the observed failure mechanisms. In the present
work the unconfined bar experiments are examined by performing nonlinear wave
propagation simulations based on a multiple-plane microcracking model. Stress his-
tories measured with embedded gauges are compared with the model predictions to
assess the relevance of compressive damage and its rate. Stress decay with distance of
wave propagation is correlated to elastic dispersion and initial flaw size. Moreover,
high speed photographs are compared to the predicted damage distribution within
the bar and its radial expansion. The microcracking model provides good agreement
with all the relevant features experimentally measured.

In this investigation a parametric study of failure in brittle materials due to dynamic
microfracture is performed. The study would be of considerable interest in the following :

(1) Clarification of the mechanisms leading to the observed material failure and
its dependence on grain size, second phases, and manufacturing processes.

(ii) Assessment of the role of damage induced anisotropy and pressure in the
compressive behavior of brittle materials.

(iii) Development of guidelines for a better characterization of these materials
including the selection of measurable quantities and their locations based on
their sensitivity to damage and inelasticity. This aspect is of particular relevance
in high-resolution velocity interferometry diagnostics.

2. EXPERIMENTAL METHOD AND RESULTS

2.1. Experimental configuration

Two types of alumina bars were used in the study. The first type were 12.7 mm
diameter AD-998 and AD-94 sintered alumina bars manufactured by Coors Porcelain
Company, Golden, CO. These bars were supplied by the manufacturer in 30.5 cm long
pieces. The other type of bars were cored through the thickness of 30.5 x 30.5 x 7.6 cm
thick Coors AD-995 slabs. The surfaces of both types of bar were finely ground to a
smooth finish and there were no visible surface flaws. The experimental configuration
is shown in Fig. 1. Manganin gauges (Type C-880113, Micro-Measurements, Raleigh,
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Fig. 1. Experimental configuration.
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FRAME 1

Fig. 3. Sequence of framing camera photographs in experiment 7-1385. Frames are 10 s apart.
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Fig. 4. Sequence of framing camera photographs in experiment 7-1748. Frames are 10 us apart.
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Table 1. Summary of experimental results

Pulse width
Impactor Target @75% of  Measured
Shot type/dim.* Imp. vel.  mat./conf.} Tilt peak stress
no. (mm) (m/s) (mm) (deg) (us) (GPa)
7-1385 AD-998 Bar 306 AD-998 0+0.5 1.3+0.1 &, =3.95+40.1
L=350,D=127 127-g-50
7-1389 AD-998 Bar 99 AD-998 0+05 85401 ¢,=21£01
L= 635, 127-g-50
D =127
7-1331 AD-94 Bar 297 AD-94 0+0.5 1.04+0.1 o,=2.710.1
L=50,D=127 127-g-50
7-1748 Cored AD-995 bar 278 Cored AD-995 040.5 1.3+0.1 o,=3.54+02
L= 50.8; 76-g-25.4
D=127
7-1750 Cored AD-995 bar 175 Cored AD-995 04+0.5 25401 o,=3.64+0.3
L =508, 76-g-25.4
D =127

* [ = length; D = diameter.
T& = gauge.

NC) were embedded at 10 diameters in the AD-998 and AD-94 bars and at 6 diameters
away in the cored AD-995 bars from the impact faces. The gauges were backed by
25.4 or 50 mm long pieces of the bars of the same material as the front piece. The
back pieces of the assembled bar targets were set in a lexan disk in order to align the
target for a planar impact. A coaxial trigger pin was also set through a hole in the
Jexan ring to trigger a manganin gauge bridge circuit and a high speed Imacon camera.
The bars were painted black so that cracks and faults could be distinguished during
the failure event.

The impactor bars were 12.7 mm in diameter and were of the same type of alumina
bar as that of the target. These were glued in a hole machined in the lexan sabot and
the heights above the sabot surface were normally 12.7-28 mm. A total of five
experiments was performed using the 50 mm gas/powder gun at the University of
Dayton Research Institute. High Speed Imacon camera was operated at 10° frames
per second. Measured profiles of manganin gauges were converted to stress—time
profiles following the calibration by Rosenberg and Partom, 1985.

2.2. Experimental results

The experiments discussed in this paper are summarized in Table 1. Impact velocities
between 99 and 306 m/s have been used. At 99 m/s (experiment 7-1389) the material
remains elastic and the compressive wave duration, of approximately 10 s, is deter-
mined by the arrival of the unloading wave from the free end of the target bar to the
gauge location.

The measured stress profiles are given in Fig. 2. It can be observed that the stress
level remains high with a peak stress approximately equal to the one predicted by
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Fig. 2. Measured stress profiles at 127 mm from the impact surface in experiments 7-1389 and 7-1385 and
at 76 mm in experiment 7-1748.

elastic one dimensional stress. By contrast, when the impact velocity is high enough
to introduce damage, for instance experiments 7-1385 and 7-1748, the maximum
compressive stress is sustained for only 200 ns with a main pulse duration of approxi-
mately 1.8 us followed by a tail, see Fig. 2. Furthermore, the measured peak stress is
only 70% of the computed peak stress assuming elastic 1-D stress conditions. This
indicates the peak stress is attenuated before the wave reaches the gauge location. It
should be noted that in this case the pulse duration is controlled by the damage
process rather than by unloading from the free end of the target bar.

The evolution of damage can be observed in the sequence of photographs, with
each frame every 10 us, shown in Figs 3 and 4. In the case of experiment 7-1385, Fig.
3, the first frame is shown in the upper left corner; a gap between the target and
impactor bars can be noticed to the left of the vertical fiducial mark. Impact takes
place sometime between the fourth and fifth frames. In the sixth frame a radial
expansion is clearly observed which becomes more evident in the subsequent frames.
Well defined patterns of axial cracks are also observed in a region approximately two
bar diameters in size, symmetrically formed from the impact surface. A violent radial
expansion with a debris of fined particles results from accumulated damage and
pulverization of the material. This failure mechanism has been identified in all alu-
minas independently of the impurity content. A sequence of photographs recorded in
experiment 7-1748, Fig. 4, illustrates this feature. As in the case of sintered AD-998
alumina this AD-995 alumina with a larger glass content also fails by bar splitting.

3. MODELING

3.1. A microcracking multiple-plane model

In this section the inelastic response of brittle and quasi-brittle materials is modeled
through a microcracking multiple-plane model based on a dilute approximation
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Fig. 5. Schematic of microcracking multiple-plane model.

(Taylor model). Our formulation overlaps with some theories in which multiple-plane
representations of inelasticity are derived, e.g. Seaman and Dein (1983), Bazant and
Gambarova (1984), Ju and Lee (1991a,b). In the quasi-static case, Ju and Lee
(1991a.b), employed a self-consistent method together with an analytical solution for
weakly interacting cracks in order to derive inelastic compliances. Unfortunately, the
averaging methods used to compute effective moduli do not admit a straightforward
extension into the dynamic range.

The basic concept is that microcracking and/or slip can occur on a discrete number
of orientations (Fig. 5). In our computational model, the slip plane properties (fric-
tion, initial microcrack size, microcrack density, etc.) and their evolution are inde-
pendently computed on each plane. The macroscopic response of the material is based
on an additive decomposition of the strain tensor into an elastic part and an inelastic
contribution arising from the presence of microcracks within the solid. In contrast to
scalar representations of damage, e.g. Rajendran (1992), the present formulation is
broad enough to allow the examination of damage induced anisotropy and damage
localization in the interpretation of impact experiments.

3.1.1. Stress—strain relations in tension. Consider a representative volume V of an
elastic solid containing a large number of microcracks. The average strains contributed
by the open microcracks are given by

1

g ==Y 1 306%n®+nPbP)dS (1
V k Js® "~
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where the subindex k is used to label the microcracks, with S* denoting the surface
of microcrack k, n® the corresponding unit normal, and b*’ the displacement jump
across S*. Here we consider loading conditions leading to crack opening, i.e. the
displacement jumps b’ have a nonnegative component in the normal direction n'*,
namely,

b¥n* = 0. (2)

Let o denote the applied stress field which would be present in the representative
volume where the solid is uncracked. For a penny crack of radius a in an infinite
isotropic elastic solid subjected to remote uniform stress 6. the expression for b is
given by Willis (1968) as

8(I —v° )
b= nE(— 1/a —r*[20,n;—vannn) (3)

where E and v are the Young’s modulus and Poisson’s ratio of the uncracked solid
(matrix), respectively, and r denotes the distance to the center of the microcrack.
Assume now that the applied stresses can be taken to be nearly uniform over each
microcrack. Following Kachanov (1980), we note that, if the density of microcracks
is low enough that their interaction can be neglected, and all microcracks are assumed
to be planar, then

;,= Z mf b"" “"-l—n‘“b“") (4)
I\
where
- 1 16(1—v*
b = WJ‘ b dS = ——35(,(2 11_)) a®(2a,n" —va;nnn) (5)
SIAD =

is the average displacement jump across microcrack k.
Within the framework of a multiple-plane model with nine independent orientations
of microcracks (see Fig. 5), the inelastic strain tensor is given by

9
g5 = Y N®SOLGOR® 4 n®p) (6)

k=1
in which N is the microcrack density of each orientation. In the present formulation,
N'™ is assumed constant, although an initial distribution as a function of stress and
an evolution equation could be proposed, Seaman er al. (1978). At the present
time information on N*' and its evolution are not available for the material under
investigation. Development of recovery experiments, which will allow the post-test

examination of the samples, is needed.

3.1.2. Stress—strain relations in compression. The point of departure is again (6)
which gives the average inelastic strain, due to microcracking, of a representative
volume of material. Because the inequality (2) is not satisfied in this case, the effective
shear traction can be defined as
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in which u is the friction coefficient of the microcrack faces, and o, are the resolved
shear stress and the normal stress acting on the microcrack, respectively, and n, is the
unit vector in the direction of the resolved shear traction. Throughout this section the
superindex k is implicit.

The average sliding of the faces of the crack, following from Willis’ (1968) result
(3),1s

32(1—v?)

= ma i (8)

D

Embodied in (8) is the notion that f provides the effective driving force for the sliding
of the microcracks. A revealing alternative form of (8) may be derived as follows. Let
b = |b| be the magnitude of the sliding displacement. Then, multiplying (8) by t and
after some rearrangement, one finds that the relation

o InEQ2—v) .
ns 9b = n_ 5 b =0 9
@ T} =T U= 1 oy ®

must be identically satisfied during sliding. Equation (9) may be regarded as a balance
of forces - the first term t represents the externally applied driving force; the second,
1o, the frictional resistance ; and the third, the restoring force from the surrounding
elastic medium. When sliding occurs, the friction condition (9) together with the
equation of evolution for a determine the evolution of b.

3.1.3. Dynamic microcrack growth. In order to compute the inelastic strain tensor
at all times, it becomes necessary to follow the evolution of the microcrack radius
a(n) in the selected orientations. The structure of this equation is obtained by means
of the following argument. Assume that microcrack growth is governed by a dynamic
toughness, K,(a), which depends on the crack tip velocity, i.e. growth is sustained
provided that

K(a,a;t) = Ky(a), (10)

where K is an effective dynamic stress intensity factor on the microcrack front. For a
given loading, K may be expected to be a function of the current crack size a, the
velocity of the crack tip a, and the time 7, through the temporal dependence of the
loading (Freund, 1990).

It is shown in Espinosa (1994) that in the case of mixed mode loading the equation
of evolution for a is

a = meg[l — (Kic/Ke)"] 2 0, (11)

where n and m are phenomenological material constants which may have different
values in tension and compression, and K. is an effective stress intensity factor. For
mixed mode conditions, K.y is derived by considering an average energy release rate
associated with an increase in radius of the microcracks, namely,
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1 4% [ —p?
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Y

[KT 4+ Kii+ Kiu/(1—v)] df (12)

and,

YE
Kap= [ (13)

I —y-

3.2. Numerical implementation

The general structure of the constitutive equations corresponds to that of a solid
with a damage induced anisotropic stress—strain relation with elastic degradation. In
particular, the effective behavior of the solid is predicted to be rate dependent due
to crack kinetics effects. From a computational standpoint, this ensures numerical
reliability and mesh independence (Needleman, 1988 Espinosa, 1989). This is in
contrast to quasi-static formulations of damage for which the governing equations
become ill-posed in the softening regime (Sandler and Wright, 1984). If the material
is subjected to a predominantly tensile stress state, microcracks along orientations
perpendicular to the direction of maximum tensile stresses will grow according to
(11). In this case, significant dilation is expected due to mode I crack opening. If a
predominantly compressive state of stress with shear is imposed, then crack opening
is inhibited but inelasticity is manifested by the growth of penny-shaped cracks in
modes 11 and 111 (shear modes).

Based on an additive decomposition of the strain tensor, and assuming Hooke’s
law, the equations governing the response of the material are

: 1 ek ik L = 1+v v
Y. SN S*(b*n* +n*b*) = s—( i a-l—:_o'MI). (14)
k=]

The expression for b* is a function of the loading mode on each plane as previously
discussed. For simplicity, only the equations corresponding to the compressive mode
will be given in detail. A similar treatment applies to the other cases.

Substitution of (8) into (14) gives the following stress—strain relations :

o 16(1—v?)

3E2—v) (@")*N*[(e - n)n* +n*(o-n*) — (n* - ¢ - n*) (20" 0" — p(n,)"n’
k=1 =

—un*(m)M)] =s—[] e ]_‘a,‘.kl]. (15)
E E

Differentiation of (15) with respect to time provides the constitutive equations in rate
form. Fully implicit integration of this equation is computationally too intensive,
while explicit integration lacks accuracy and becomes unstable during unloading
when substantial damage within the material has developed. These disadvantages are
overcome through the use of a semi-implicit scheme in which the crack-tip equation
of motion, and the direction of the shear traction on the microcrack plane are explicitly
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updated, while the remaining variables are treated implicitly. Under these conditions,
the relation between the stress rate tensor and the total strain rate tensor becomes

I+v v > 16(1—v?
(—-E—ld'— ‘E'dkkl)—i_k; ;((2—_“,))Nk((a"’)3 +3(a*)?a*An)[(6 - n*)n* +-n*(6-n")

—(n* - ¢ -n*)(2n*n" — p(n,)*n* — pn*(n)"] ;|

9 —y2
-!-k; 136E((]2 _1,,)) NA-(ak)S'tt(n"‘ T “k).'+| [(n*ﬁf +ﬂfnk)]At
= Sy = k; 13?;(]2 )) N*3(a*)*d*[(e - n*)n* +n* (6 -n*) — (n* - o - n*)(2n"n*

9 16(1—v?)

— gk k k1 _ Sed e B
p(n)'n' — ()~ 3 S

N¥(a*)’ p(n* - ¢ - n*),[(n* 0¥ +0afn*)], (16)
in which the indices / and i+ 1 refer to two subsequent times. This equation cor-
responds to the case in which the effective shear traction on the surface of the crack
is such that additional slipping occurs, i.e. b* > 0. Similar expressions can be derived
for the sticking case, in which (9) is satisfied with b* = 0.‘Equation (16) can be written
in matrix form and the stress rate tensor obtained by simple elimination. After the
stress rate tensor is known, the average displacement jump rates and inelastic strain
rates can be computed from the following equations:

& 32(1=v%)
b = 31[1(5(2 )[A(| ¥+ ueimk +a* (|t + pelmt +a*(|<|* + uant],  (17)

SA
& Z N¥[ra*a* (b*n* +n*b*) + 5 Z_(b*n* +n*b*)]. (18)

k=1

4. NUMERICAL SIMULATIONS

The microcracking multiple-plane model has been utilized in the interpretation of
the bar experiments conducted on Al,O; rods. A dynamic finite element axisymmetric
analysis is performed to simulate the experiments reported in Section 2. The software
used in the calculations is a modified version of FEAP (see Zienkiewicz and Taylor,
1989). The impactor and target bars have a diameter of 12.7 mm, and a length of 80
and 170 mm, respectively. A uniform mesh with four-node quadrilateral elements is
used. The element size in the direction of wave propagation is 0.5 mm. Symmetry
boundary conditions are imposed at the bar axis. In order to preserve axisymmetric
conditions, only planes 1, 2, 6 and 8 are included in the analysis (see Fig. 5). The
model parameters used in the calculations are N = 1x10"?/m’ for planes 1 and
2, N=1x10"m’ for planes 6 and 8, K;c=1.7 MPa\/n;, u=0.1, ay=1 pm,
nt =m* =023, and n~ = m~ = 0.1. Whenever different parameters are used, the
corresponding plots indicate the variation with respect to these values.
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Fig. 6. Computed axial stress histories for 99, 300 and 600 m/s impact velocities.

The model parameters are selected such that a damage threshold is properly cap-
tured and at the same time they are in agreement with values reported in the literature.
Microstructural differences have an effect on model parameters. For instance, the
existence of a second phase at the grain boundaries controls parameters g, n*, m*
and K. The grain size controls the values of g, and maximum density of each
orientation. The choice of different crack densities as a function of orientation is
motivated by experimental data (Espinosa ef al., 1992) indicating that the density of
active microcracks is a function of the mechanism responsible for crack nucleation.
In the case of predominantly compressive stress states, glass at the grain boundaries
determines the early stages of inelasticity and acts as a precursor for the development
of triple point microcracks. In the case of predominantly tensile stress states, cracks
are mainly nucleated due to grain boundary decohesion at a much lower stress level.
In the present calculations, plane 1 is a plane on which positive normal tractions
result from unloading waves emanating from the bar surface. By contrast planes 6
and 8 are mainly shear cracks.

The effect of impact velocity on the stress histories is shown in Fig. 6. The micro-
cracking model with the above parameters has been utilized. The simulations capture
the long pulse duration in the case of shot 7-1389 (impact velocity 99 m/s) basically
because the material remains undamaged. A peak stress of approximately 2 GPa is
predicted with oscillations introduced by radial release waves originated at the bar
surface.

A different situation is observed in the case of experiment 7-1385, in which an
impact velocity of 300 m/s was used. After the stress pulse reaches a peak stress of 4
GPa, the axial stress is rapidly attenuated leading to a main pulse duration of only
4.5 pus. When the impact velocity is increased to 600 m/s, a peak stress of 6 GPa is
predicted. This higher peak stress is the result of the model rate sensitivity due to
crack kinetics effects. A slightly higher stress attenuation rate and a shorter pulse
duration are also observed.
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Fig. 7. Computed axial stress histories at 20, 70 and 120 mm from the impact surface.

In both cases the rising part of the stress profile shows features characteristic of
wave propagation in rods. A cusp in the stress history corresponding to the separation
between a first compressive wave, traveling under uniaxial strain conditions (acoustic
wave speed), and a second compressive wave corresponding to the arrival of a
longitudinal wave, traveling under uniaxial stress conditions (bar wave speed), is
observed. During these early times the material response is basically elastic.

Some additional aspects of the wave propagation event can be observed in Fig. 7,
in which the axial stress histories have been plotted at three locations along the
ceramic rod. The configuration and impact velocity of shot 7-1385 is used, but no
comparison 1s made because only one stress history is recorded experimentally. A
strong stress attenuation at the wave front occurs due to waveguide effects. The
formation of the second compressive wave with a very well defined structure is
recorded at 120 mm from the impact surface. This wave also presents a significant
peak stress reduction when an initial microcrack radius of 20 um is used.

Almost no attenuation occurs when the initial microcrack radius is set to 1 um, see
Fig. 8. A comparison between the numerical simulations and two experimental records
(7-1385 and 7-1748) is performed in the same figure. Agreement with the exper-
imentally measured stress-time profile, using manganin gauges, is achieved with
a, = 10 um. Peak stress and pulse duration are well characterized by the model. It is
also seen that for large values of a, a long tail develops, due to wave dispersion, in
agreement with the recorded stress history in experiment 7-1748. In experiment 7-
1385, the embedded manganin gauge failed after approximately 2 us and therefore
the tail has not been observed. Some of the oscillations present in the numerical
simulations may be related to a limited spatial resolution of the mesh. A run performed
with a finer mesh presents a smoother velocity history but the relevant features were
unchanged.

The fact that a large value of g, is required to match the experimental records
deserves further analysis. From a micromechanical standpoint, the existence of an
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Fig. 8. Comparison of numerical simulations and experimental record for experiment 7-1385. The stress
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initial microcrack radius implies the generation of a nonzero inelastic strain rate at
the wave front. The net effect is an elastic precursor attenuation proportional to a;.
The need for a significant value of @, to achieve the best fitting of the experimental
records can be linked to the presence of a glassy phase in the tested aluminas. Espinosa
et al. (1992) have shown that the onset of inelasticity in aluminas containing a glassy
phase is controlled by the shear resistance of this phase which leads to grain boundary
shearing and a plastic-like behavior. Furthermore, this shearing leads to triple point
microcracks that can grow further under the applied loading.

Further evidence of the compressive wave attenuation can be seen in a plot of axial
particle velocity at the rod end as a function of initial microcrack radius, see Fig. 9.
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Fig. 10. Contours of volumetric strains, in the deformed configuration, at three different times after impact.

The double wave structure is again noticeable in all traces, although the ramping
slope of the second compressional wave is different. It can be appreciated that the
particle velocity reaches an almost constant magnitude in the first 3.5 us followed by
a decay and subsequent increase to a lower relatively constant amplitude. This pull
back signal can be correlated to bar spalling upon reflection of the compressive pulse
as explained in the next paragraph. The particle velocity histories replicate the features
observed in interferometrically measured axial velocities (Grady and Wise, 1993), in
particular when a large a, is utilized. These calculations clearly show that the free
surface particle velocity level is controlled by the strength of the compressive pulse
reaching the free end of the bar.

In view of the experimentally measured and computed stress pulses, in which a
short pulse duration is observed, the constancy of the free surface particle velocity
for long periods of time needs clarification. Contours of volumetric strains in the
discretized field at three different times are given in Fig. 10. It should be noted that
volumetric strains larger than zero correspond to tensile damage, crack opening,
which in this case is confined to the central region of the bar. At 11.19 us a well
defined spall region develops in the impactor bar, as a result of the shape and duration
of the compressive wave reaching the bar free surface. A similar dynamic tensile
failure is predicted in the longer target bar, which explains the constancy of the free
surface particle velocity mentioned above. Significant amounts of dilation are also
observed at the bar core due to tensile fracture of the material. This failure mode is
induced by the focusing of release waves from the bar surface.
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On the basis of these contours one can infer that the bar lateral expansion has two
contributions, one from the deformation of the material due to crack growth and
shearing under local compressive fields and another from dilation at the core of the
bar. The evolution of compressive damage within the bar can be identified by plotting
contours of the second invariant of the inelastic strain tensor at different times, Fig.
11. As in the case of volumetric strains, the contours are plotted in the deformed
configuration. The numerical simulation predicts extensive compressive damage in a
region of approximately one bar diameter in agreement with photographs obtained
during the impact event, see Section 2. From this figure it can be seen that the
compressive damage gradually extends towards the interior of the bars leading (o a
significant increase in bar diameter in a region close to the impact surface. If com-
parison between the high speed photographs and the numerically predicted radial
displacements is performed within the first 15 ps, good agreement is observed. It
should be noted that the end of the numerical calculation falls between frames 3 and
4 in Fig. 4. Further insight into the deformation mechanisms leading to the increase
in bar diameter can be gained by examining crack radius histories of all active
orientations, see Fig. 12. The crack radius histories correspond to an element located
at the bar core 20 mm from the impact surface. The first cracks to grow are those on
orientations 6 and 8, i.e. cracks at +45” with respect to the bar axis. At approximately
2.5 us splitting cracks (orientation 1) start to grow due to tensile stresses produced
by unloading waves generated at the bar periphery. It can be observed that cracks at
+ 45" with respect to the bar axis have a lower rate of growth than cracks parallel to the
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Fig. 13. Axial stress histories at 20 mm from impact surface for three different compressive damage rates.

bar axis (orientation 1). Moreover, cracks perpendicular to the bar axis (orientation 2)
exhibit no growth at this location.

Next we examine the effect of compressive damage and its rate on the axial stress
histories, see Fig. 13. The axial stress is plotted at a point on the bar axis 20 mm from
the impact surface. The tensile damage parameters are the same in all three cases,
while different values of m~ have been used. A value of m~ = 0 implies no compressive
damage. These stress histories clearly show compressive damage and not tensile
damage is the feature responsible for the observed stress decay and short pulse
durations. Moreover, it can be seen that during the first microsecond the response of
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the material is basically elastic with stress variations dictated by the arrival of release
waves from the rod surface. A progressive stress reduction follows with a rate of stress
decay controlled by the rate of crack growth (parameter m~ in the model).

In the case of no compressive damage, the axial stress remains approximately
constant with a value of 6 GPa, which coincides with computed stress level assuming
elastic response. Further information on the effect of damage evolution in the field
variables can be obtained from a plot of radial velocities at points located on the bar
surface, see Figs 14 and 15. Points located farther away from the impact surface show
longer arrival times. In Fig. 14 the variation of the radial velocity with distance from
the impact surface is shown. The radial velocity initially jumps to a first peak, reduces
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its magnitude and then rises again. This oscillatory structure is preserved at later
times although significantly attenuated due to tensile and compressive damage. These
velocity variations are produced by radial release waves reverberating within the bar.
The strong changes recorded in the first 2.0 us indicate the initial response of the bar
is basically elastic with a progressive increase in inelasticity.

It can be seen that material particles close to the impact plane undergo a significant
radial expansion while points farther away show a more moderate expansion. It can
be argued that the main difference is related to the failure modes and their distribution
along the rod. We have shown earlier that the main compressive damage extends only
one diameter from the impact surface while the tensile damage occurs along the bar
core and at the end of the bars (spall regions). Therefore, the radial motion of particles
close to the impact plane is controlled by compressive damage and its rate, while the
radial motion of points farther away is controlled by tensile damage occurring at the
bar core.

In Fig. 15 the effect of crack growth rate is illustrated. In the case of pure tensile
damage, m~ = 0.0, the radial velocity shows an initial variation consistent with an
elastic material response followed by an oscillatory radial velocity with regions of
negative velocity. By contrast, when compressive damage occurs, the radial expansion
becomes larger. It is interesting to note that a large accumulation of damage leads to
dramatic increases in radial velocity. If these increases are the consequence of numeri-
cal instabilities and/or an indication of material pulverization needs further inves-
tigation. Another feature that can be observed in Fig. 15 is the radial velocity
oscillations produced by radial release waves. This effect is strongly attenuated in
time when compressive damage occurs, m~ = 0.10 and 0.15, leading to a smoother
radial velocity history.

5. CONCLUDING REMARKS

In this work, we have presented a parametric study of damage and inelasticity on
the overall failure of ceramic bars which cannot quantitatively be researched by
experiments alone. The simulations allow the decoupling of the relevance of com-
pressive and tensile damage in experimentally recorded stress and velocity histories.
Furthermore, the importance of the presence of second phases in the dynamic yield
strength and its dependence on propagation distance has been assessed.

The bar impact experiment is a useful technique to study failure in brittle materials.
It provides a direct measurement for the yield stress at rates of 10°-10%/s. However,
in view of the present calculations and experiments, in which the peak of the second
compressive stress is highly dependent on distance of propagation, caution must be
exercised in its determination. Target rods at least 10 diameters in length may be
required especially in the case of ceramics containing second phases at grain boun-
daries, i.e. Al,O,, TiB,.

Although the unconfined bar experiment subjects the material to large inelastic
deformations, at least in a region close to the impact surface, the number of active
inelastic planes is smaller than those observed in pressure-shear experiments (Espi-
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nosa, 1994). Consequently, the bar experiments should be considered a comple-
mentary technique for the characterization of failure mechanisms in brittle materials.

The measured waveforms appear very useful in the examination of constitutive
models and numerical solution schemes. In-material stress measurements, with
embedded manganin gauges, are very useful in providing axial stress histories that
otherwise cannot be obtained. Stress decay, pulse duration, release structure and
wave dispersion are very well defined by these measurements. Free surface velocity
measurements at the rod end basically provide the strength of the transmitted com-
pressive wave and the pull back signal due to bar spalling. In making dynamic yield
strength estimates, the average level of the free surface particle velocity which follows
the arrival of the second compressive wave should be used. The lower velocity level
that follows corresponds to the pulse strength trap at the bar end which is a function
of the pulse tail strength. A more damage sensitive free surface velocity measurement
is the radial velocity. When such measurements are performed within two bar diam-
eters from the impact plane, the rate of damage and its distribution can be recorded.
The duration of these records is expected to be limited due to severe surface degra-
dation after approximately 10 us, especially at points very close to the impact surface.

High speed photography is instrumental in the understanding of failure modes. It
is shown that unconfined alumina bars fail by stress induced microcracking. The
overall agreement between the numerical simulations and the experimental records
clearly indicates that the microcracking multiple-plane model has the potential to
capture the main physics of the dynamic failure process. Quantitative charac-
terizations of microcrack densities, initial size distribution, and nucleation rates are
not available. However, it should be emphasized that while the quantitative pre-
dictions would depend on these parameters, the main qualitative features are not
expected to.

We have confined attention to a multiple-plane microcracking model in which a
plastic-like behavior of the material due to second phases is not directly included. The
model could in principle be extended to account for this effect (Curran e al., 1992;
Espinosa, 1992), although there is not enough information on the mechanical behavior
of these grain boundary phases. The presence of glass at the interfaces determines the
early stages of inelasticity and acts as a precursor for the development of microcracks.
By contrast, high purity ceramics possess tougher interfaces, and cracks are nucleated
due to plastic deformation within the grains (slip, twining). It is clear that a detailed
and complete description of the failure of brittle materials under multiaxial loading
requires coupling between plasticity, densification (in the case of ceramics containing
a glassy phase), and microcracking. This and other key issues like microcrack densities
and nucleation rates need to be addressed in order to develop general models of brittle
failure.
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