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Abstract

The size-dependence of the plastic response of single-crystal micropillars at submicron/micron length scales under compression was
investigated using three-dimensional discrete dislocation dynamics (DDD) simulations. In the simulations, the initial dislocation config-
uration consists of randomly distributed Frank–Read-type dislocation sources. The simulation results are compared with a dislocation
evolution model for geometrically confined systems with free surfaces, intended to approximate the evolution behavior of the dislocation
density at sufficiently high velocities or stress levels. The dependence of the effective stress on both the sample dimension and source den-
sity was shown to take the form seff / 1= a

ffiffiffiffiffiffiffiffi
hNi

p� �
at a fixed strain rate, where a is the sample dimension and ÆNæ is the number density of

activated sources. This relationship is found to be in good accord with the DDD simulation results. The new finding in this study is that
the size dependence of the plastic response can be independent of source strength in the high-velocity or high-stress regime. The length-
scale effects we observe are due to dislocation escape through free surfaces. Mobile dislocations can typically escape faster in a smaller
sample, leading to a lower mobile dislocation density and an increased resistance to plastic flow. Thus, the dislocation-escape mechanism
provides a possible explanation of the experimentally observed size effects in the testing of micropillars.
� 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Metallic materials at micron/submicron length scales
exhibit significant size effects when deformed plastically.
Fleck et al. [1] showed that, when loaded in torsion, metal-
lic wires display greater strength for smaller radii, while
such length-scale effects were not observed in tension. Con-
ventional plasticity theory is incapable of predicting the
observed size effects due to the lack of a length scale in
the constitutive relations [2]. Emerging gradient plasticity
theory appears to be promising and has been successful
in explaining some observed size effects related to the pres-
ence of geometrically necessary dislocations (GNDs).
GNDs can have a dominant effect on the flow stress or
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the hardening of metallic materials in the presence of sig-
nificant plastic-strain or rotation gradients. This can arise
even for loading compatible with macroscopically homoge-
neous deformation due to the constraining of plastic flow
by relatively rigid surfaces or substrates [3]. In contrast to
the lack of plasticity size effects in tension of a metallic wire
[2], significant size effects in free-standing submicron
polycrystalline thin films subjected to macroscopically
homogeneous fields were first identified by Espinosa et al.
[4–6]. These results were recently interpreted by three-
dimensional (3-D) discrete dislocation dynamic numerical
simulations in Refs. [7–9]. In the studies carried out by
Espinosa and co-workers, grain boundary sources were
considered, and the size effects were mainly attributed to
source-dominated plastic deformation mechanisms.

In the present study, we focus our attention on the
understanding of size effects exhibited by geometrically
rights reserved.
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confined single-crystal systems when plastic deformation is
unconstrained. This is motivated by the work of Uchic
et al. [10], Dimiduk et al. [11] and Greer et al. [12]. In their
studies, compression tests on single-crystal micropillars
having diameters ranging from submicron to tens of
microns were performed. In Dimiduk et al. [11], single-slip
oriented micropillars of pure Ni having sample diameters
from 1.0 to 40.0 lm were tested, while multiple-slip-
oriented single-crystal micropillars of gold with diameters
varying from 0.3 to 7.45 lm were investigated in Ref.
[12]. In both studies, the experiments revealed a strong
size-dependent material response. The measured flow stres-
ses were significantly higher than that of the material in
bulk. A trend of increasing flow stress with decreasing
micropillar diameter was observed. In Ref. [12], the ‘‘dislo-
cation starvation’’ mechanism reflected by discrete strain
bursts separated by periods of nearly elastic loading was
considered as the key to the observed size dependence.
According to this mechanism, the free distance that
dislocations can travel for breeding is limited by the sample
dimensions. As a result, dislocations generally escape from
the free surfaces of the single-crystal micropillars prior to
multiplication through mechanisms like double cross-slip.
This leads to the formation of dislocation-starved condi-
tions responsible for so-called exhaustion hardening. In
order to sustain plastic deformation, the applied stress
must be increased to elevate the source-operation rate or
to activate more ‘‘hard’’ dislocation sources. In Ref. [11],
the mechanism related to exhaustion hardening was further
elaborated in the context of dislocation kinetics. Plausibly,
the authors attributed the observed size effects to three
stochastic effects – dislocation generation by a stress-
dependent source distribution; dislocation escape at free
surfaces; and dislocation trapping, which alters the stress-
dependent mobile density and source density.

In order to shed light on the observed size effects, Desh-
pande et al. [13] modeled the deformation of a planar single
crystal under compression using 2-D discrete dislocation
plasticity. Both small-strain and finite-deformation analy-
ses were conducted. In Deshpande et al.’s study, results
obtained with and without constraining of the tensile axis
against rotation were compared. Their results showed that
the size dependence was stronger for the latter case, quali-
tatively consistent with the experimental results. The size
effects observed in their study arise primarily from interac-
tions between dislocations and obstacles. In another study,
Benzerga and Shaver [14] used mechanism-based discrete
dislocation plasticity to investigate size effects on the plastic
response of single-crystal micropillars. In their study, the
size effects were attributed to the internal stresses as well
as to the source strength and time scales associated with
source nucleation.

While 2-D dislocation-plasticity modeling provides use-
ful insights into the experimentally observed size effects,
there are a number of idealizations that require further
study. In a 2-D model, the effect of dislocation curvature
is ignored. Moreover, the importance of long-range inter-
actions is overestimated, and several key 3-D dislocation
interaction mechanisms must be either ignored or added
in an ad hoc manner. In the present study, a completely
3-D approach is used to investigate the effect of dislocation
escape on the size-dependent plastic response of micropil-
lars under uniaxial compression. While it has been believed
that dislocation escape plays a significant role on the exper-
imentally observed size effects, the details of the operating
mechanisms associated with dislocation escape have not
been fully investigated.

Our paper is organized as follows. In Section 2, we
briefly review the discrete dislocation dynamics model used
in the calculations. In Section 3, we then define the prob-
lems to be examined. Both simulation results and mathe-
matical models are presented in Section 4. Some
concluding remarks on this study are given in Section 5.

2. Discrete dislocation dynamics model

The simulations conducted here use the code PARA-
NOID. Details on the methods used in PARANOID were
described in Refs. [15,16]. Here we briefly review some
important features of the discrete dislocation dynamics
(DDD) methods used in this study.

In the DDD model, the motion of dislocation lines
determines the plastic deformation of a crystal. While the
detailed microscopic nature of the dislocation core region
fixes specific dislocation parameters such as the slip system,
the effective core radius and the drag coefficient, the idea of
DDD is to treat the dislocations as line singularities in an
elastic continuum. To calculate their behavior, each dislo-
cation line is represented by a chain of nodal points. The
glide force per unit length acting at each node is then deter-
mined from the Peach–Koehler relation:

f g ¼ ðb � rT � nÞn� t ð1Þ
where b is the Burgers vector of the dislocation, rT is the
total stress tensor, n is the normal to the slip plane and t
is the unit vector pointing in the direction of the line seg-
ment. The total stress tensor includes the applied stresses
and the internal stresses generated by the presence of dislo-
cation themselves. Since the solutions for the internal stress
field are obtained for an infinite body, additional correc-
tions are required for satisfying boundary conditions. To
maintain stability of computation, the core-splitting is gen-
erally continued beyond the nearest neighboring nodes.
Once the force at each node is determined, the node is
moved according to the viscous drag rule

V ¼ f g=B ð2Þ
where B is the drag coefficient. No thermally activated pro-
cess is taken into account in the calculations.

Dislocation escape occurs when dislocation lines inter-
sect a free surface. In principle, the interaction of the dislo-
cations in our sample with its free surfaces is an extremely
demanding computational problem. A detailed examina-
tion [17] of this issue has, however, shown that very simple
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approximations work surprisingly well for situations in
which the dislocation lines have significant curvature.
Accordingly, in the present calculations any dislocation
encountering a free surface simply reconnects to the sur-
face, after which the ends are allowed to move freely along
the surface. All other surface corrections are neglected. As
demonstrated by Liu and Schwarz [17], this leads to rela-
tively small errors, of the order of 10%. To this degree,
the effects of image forces on the evolution of total disloca-
tion density of a crystal sample are not considered as signif-
icant. In particular, for cases where the sources are
overstressed for a rapid multiplication or source operation
rate, the effects of image forces can become trivial on the
material response. For example, this can occur in the com-
pression tests of single-crystal pillars with diameters below
�10 lm. In these tests, plastic flow takes place under signif-
icantly higher applied stress compared with macroscopic
crystals [11]. Thus, the dislocations inside these small sam-
ples are most likely to be overdriven by the applied stress.

In the calculations conducted here, the macroscopic
plastic strain rate is computed from the relation

_�ep ¼ 1

2V

XM

i¼1

la
i va

i ðb� na þ na � bÞ ð3Þ

where V is the volume of the simulated crystal, la
i is the

length of dislocation segment i moving on the slip plane
a, va

i is the corresponding moving velocity of the segment
and M is the total number of dislocation segments.

3. Problem definition

The geometry of the single-crystal micropillar used in
the simulations is illustrated in Fig. 1. As noted, a square
cross-section is considered here in contrast to the circular
cross-section of micropillars tested in the experiments.
a

[010]

[001]

[100]

h

Fig. 1. Schematic of an fcc single-crystal micropillar with square cross-
section oriented in the [001] direction. Axial compression was imposed
along the [001] direction. A constant aspect ratio h/a = 3 was used in all
the simulations.
Limited studies performed on similar pillars but with circu-
lar cross-sections indeed showed that the cross-sectional
shape plays a trivial role on the simulation results. The
aspect ratio h/a between the height of the micropillar and
the side length is fixed at 3.0, and only uniaxial compres-
sion in the [001] direction is considered. Frank–Read
sources are randomly distributed through the volume,
and are assigned a Gaussian distribution of lengths. All
twelve Æ01 1æ{111} slip systems of an face-centered cubic
(fcc) crystal are considered in the calculations. However,
only eight of them can be activated when the pillar is
loaded along the [001] crystal orientation. Here the total
number of activated sources belonging to the eight slip sys-
tems is denoted by N. Unless stated otherwise, each slip
system has the same number of sources.

The single crystal is taken to be elastically isotropic, with
an elastic shear modulus l = 42.3 GPa and a Poisson ratio
v = 0.3. A Burgers vector magnitude b = 0.26 nm is used in
the calculations. The material response of the single-crystal
micropillars was modeled both under creep conditions and
with fixed ends (relaxation). In the modeling of the latter
case, the strain is applied instantly such that the initial dis-
location configurations are not influenced by the loading
process. The response of micropillars under compression
with a fixed strain rate _e ¼ �6:66� 105 s�1 was also simu-
lated. The effect of strain rate on this type of calculation
was discussed in Ref. [9]. Although inertial effects are
expected to come into play at such a high strain rate, no
attempt has been made to include the related physical
mechanisms in the present study. In addition, the velocity
dependence of mobility [18] in the high-velocity regime is
ignored here; that is, the mobility or viscous drag coeffi-
cient is taken to be a constant.

4. Results and discussion

4.1. Size effects on dislocation density evolution

In this section, we study the mechanisms controlling the
size dependence of dislocation-density evolution under
creep conditions. We first present a mathematical model
characterizing the evolution of the dislocation density.
The model is then compared with the results obtained from
three-dimensional DDD simulations.

4.1.1. Evolution of dislocation density in geometrically
confined systems with free surfaces

The evolution of the mobile-dislocation density in a
body with free surfaces takes the form [19]:

_qm ¼ _qmul � _qtr � _qesc ð4Þ
where _qm is the rate of change in the mobile-dislocation
density, _qmul is the dislocation multiplication rate, _qtr is
the rate at which dislocations are trapped per unit volume,
and _qesc is the dislocation-escape rate through the free sur-
faces. The total dislocation-density evolution rate is given
as the sum of the mobile and trapped density rates,
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Fig. 2. Dislocation density as a function of applied stress, for different
numbers of sources, in the steady-state regime. A linear dependence of
dislocation density on both the applied stresses and source numbers is
revealed.
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_qt ¼ _qm þ _qtr: ð5Þ
In the study conducted here, _qtr is mainly attributed to dis-
location trapping by dipoles, forest dislocations or jog for-
mation through collinear interaction [20].

A dislocation-multiplication model proposed by Moulin
et al. [21] is adapted to include a source density for the sin-
gle crystal considered here. It is assumed that there exist N

independently activated sources in the single crystal, and
that each of them has emitted an equal number of disloca-
tion loops. Following Moulin et al. [21], the increase of dis-
location density produced by these loops during time
interval can be expressed as

dqmul ¼ N/n�vdt=V ð6Þ
where / is a geometrical constant, �v is the dislocation
velocity and n is the number of loops emitted by each
source and remaining in the crystal. The total mobile-
dislocation density is related to n by

qm ¼
N/
V

Xn

i¼1

iDe � N/De
2V

n2 ð7Þ

where De is the spacing between loops. It is shown that the
spacing De is approximately proportional to the inverse of
the effective stress, 1/seff, stemming from the influence of
the linear velocity–stress law [21,22]. The effective stress is
defined as the total stress resolved in the active slip system.
Combining Eq. (6) with Eq. (7), we have

_qmul ¼ k�v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2/hNiseffqm

p
ð8Þ

where ÆNæ = N/V is the number density of activated
sources and k is a constant.

The dislocation escape rate through the free surfaces is
related to the dislocation flux by

_qesc ¼ de

qm�v
l

ð9Þ

where l is a characteristic dimension in the slip direction
and de is a geometrical constant.

The steady regime is characterized by _qm ¼ 0, which
occurs when the loss of mobile dislocations through both
dislocation escape and trapping is compensated by disloca-
tion multiplication. In the high-stress or high-velocity
regime, the formation of dislocation junctions or dipoles
is expected to be restricted because the externally applied
high stress can easily destroy the weaker junctions or
dipoles. In this study, we define the high-stress regime as
that in which the applied stress resolved in the active slip
system is at least twice as large as the average source-acti-
vation stress [23], scr ¼ lb=L, where L is the average source
length. We assume that the immobile-dislocation storage in
a confined volume through forest or dipole trapping can be
neglected in the high-stress regime. As a result, in the
steady-state regime we have

_qmul ¼ _qesc: ð10Þ
Combining Eqs. (8)–(10), the mobile-dislocation density at
steady state takes the form
qm ¼ k1l2hNiseff ð11Þ
where k1 ¼ 2k2/=d2

e is a combined geometrical constant.
The relationship reveals that at steady state there is a linear
dependence of the mobile-dislocation density on the effec-
tive stress, on the density of sources, and on the square
of the characteristic dimension in the slip direction. It is
emphasized that the use of Eq. (11) is subjected to the
restrictions of a fixed number of sources, the linear veloc-
ity–stress law and planar glide dominating the plastic
deformation. In addition, the relationship is more accept-
able in the high-stress or high-velocity regime. In this re-
gime, the effective stress is assumed to be approximately
equal to the externally applied stress resolved into the ac-
tive slip system.

4.1.2. Comparison with simulation results
In this subsection, we discussed the computed creep

responses of micropillars. The simulations were carried
out following the methods described in Section 2 to the sys-
tem defined in Section 3. As illustrated in Fig. 2, the linear
dependence of the steady-state dislocation densities on
both the applied stress and the source density ÆNæ predicted
by Eq. (11) is in accord with our simulation results.

Before the steady-state regime is achieved, the disloca-
tion density in the crystal is expected to increase continu-
ously according to the source model we use here. This is
illustrated in Fig. 3, which shows the evolution of disloca-
tion density with time in units of B/l for the applied stres-
ses r = 450 MPa and 650 MPa. In these calculations, a
micropillar with a side dimension a = 0.4 lm was consid-
ered. A total of 64 activated Frank–Read-type dislocation
sources, with average source length L ¼ 0:1 lm and stan-
dard deviation d = 0.02 lm were used in the simulations.
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As shown in Fig. 3, both the transient and steady-state
regimes can be clearly identified. In the transient regime,
the dislocation density increases continuously with increas-
ing plastic strain. Once the dislocation lines intersect the
surfaces, a steady-state regime is established. This regime
is characterized by simultaneous dislocation multiplication
and escape. The dislocation density at steady state is shown
to increase with increasing applied stress, in agreement with
the model leading to Eq. (11).

We also performed DDD simulations to examine the
effect of pillar size, a, on the steady-state dislocation den-
sity. The results are shown in Fig. 4. In this plot, the
steady-state dislocation density versus the applied-stress
are compared for the two cases a = 0.2 lm and 0.4 lm.
The initial densities of activated sources, ÆNæ, are taken
to be the same for both cases, with N = 8 when
a = 0.2 lm and N = 64 when a = 0.4 lm. In both cases,
the source lengths are assigned to have values in terms of
a Gaussian distribution with average source length
L ¼ 0:1 lm and standard deviation d = 0.02 lm. The slope
of the fitted line for the case with the larger sample size is
shown to be approximately four times that for the case
with the smaller sample size, see Fig. 4. This is again con-
sistent with the relationship described by Eq. (11), in which
the slope is proportional to l2. Note that the length l in the
slip direction is proportional to the sample dimension.

Another feature revealed by the simulations is that the
mobile-dislocation density in the large sample is higher
than that in the small sample due to the relatively fast dis-
location escape in the latter (Fig. 4). As a result, we expect
the plastic strain rate in the larger sample to be higher than
that in the smaller sample under the same applied stress.
This is clearly revealed in Fig. 5 for a constant stress of
600 MPa.

4.2. Effects of dislocation escape on stress relaxation

Size-scale effects on stress relaxation were also investi-
gated. Simulations were carried out for an applied strain
e = 0.5%, using a = 0.2 lm and 0.4 lm. The initial disloca-
tion configurations and densities are the same as those used
to obtain Fig. 4. In Fig. 6a and b, the evolution of the
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mobile dislocation density and stress level are displayed for
the two samples. Both the density growth and the stress
relaxation rate are initially the same in both samples. How-
ever, dislocations reach the surface earlier in the smaller
sample, after which the dislocation density decreases as
the continued relaxation of the internal stress lowers the
dislocation multiplication rate.

A noteworthy feature of Fig. 6b is that the equilibrium
stress level for the small sample differs significantly from
that for the large sample. The equilibrium stress at full
relaxation for the former appears to be close to the applied
stress required for source activation, which is estimated as
r = scr/M, where M ¼ 1=

ffiffiffi
6
p

is the Schmid factor for load-
ing in the [001] direction. With L ¼ 0:1 lm and scr ¼ lb=L,
we have r = 265 MPa, which is close to the stress level at
equilibrium shown in Fig. 6b for a = 0.2 lm. For the larger
sample, the equilibrium stress level is lower than the level
required to activate dislocation sources in the initial config-
uration. This is due to the fact that Frank–Read sources on
the same slip system can recombine via annihilation inter-
actions to produce more extended sources which are easier
to activate. In this connection we draw attention to Fig. 7,
which shows that the equilibrium state for the 0.2 lm sam-
ple is similar to the initial state, whereas the 0.4 lm sample
equilibrium state shows a drastically different structure,
exhibiting many long dislocation segments and junctions.
Movies showing the evolution of the dislocation structures
for each case are given at the URL listed in Ref. [24].
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4.3. Size effects on the stress–strain response at constant

strain rate

Having studied the effect of size on dislocation density
evolution during creep and stress relaxation, we now exam-
ine the same effect on the material stress–strain response at
constant strain rate. We begin by examining some relevant
constitutive equations.

4.3.1. Mathematical model

Assuming that the elastic strain rate is negligible com-
pared with the plastic strain rate in the presence of stable
plastic flow with a fixed strain rate, we have

_e � _ep ¼ qmmb ð12Þ
where �v is the average dislocation velocity. As discussed in
Ref. [23], the average dislocation velocity approaches the
velocity limit in free flight when the applied stress resolved
in the active slip system is greater than about twice the crit-
ical source-activation stress. In the high-velocity or high-
stress regime, the average dislocation velocity becomes
approximately proportional to the effective stress, seff.
Hence, by combining Eqs. (11) and (12) and eliminating
qm, the effective stress is shown to take the form

seff ¼ C
ffiffi
_e
p

l
ffiffiffiffiffiffiffiffi
hNi

p ð13Þ

where C is a constant. Eq. (13) can further be written as

s ¼ si þ
C
ffiffi
_e
p

l
ffiffiffiffiffiffiffiffi
hNi

p ð14Þ

with the effective stress seff = s � si, where s is the applied
stress resolved in the active system and si is related to both
short- and long-range dislocation interactions. In the high-
velocity or high-stress regime, the effects of si on the flow
stress is typically negligible when compared with viscous
resistance to plastic flow. Therefore, the relationship de-
scribed by Eq. (14) shows that the flow stress in micro-
pillars, at a given strain rate, should vary linearly with
1=ðl

ffiffiffiffiffiffiffiffi
hNi

p
Þ. This implies that not only the sample dimen-

sion but also the source density plays a significant role on
the flow stress of micropillars. Obviously, this relationship
is subjected to the same restrictions as those for the rela-
tionship described by Eq. (11).

4.3.2. Comparison with DDD simulation results

In Fig. 8, the stress–strain response curves for three
representative sample sizes a = 0.4 lm, 0.6 lm and
0.8 lm are displayed. The strain rate was held fixed at
_e ¼ �6:66� 105 s�1, and the density of activated sources
was held fixed with ÆNæ = 15.625 lm�3. The average length
of sources was taken to have a value L ¼ 0:2 lm, while the
standard deviation was d = 0.04 lm. As shown in this plot,
the pillar hardens as its size is decreased, consistent with
Eq. (14). The mobile dislocation density decreases with
decreasing sample dimensions because of the dislocation-
escape mechanism, thereby increasing the resistance to
plastic flow.

Simulations for cross-sections with dimensions in the
range a = 0.3–1.6 lm and a fixed number of activated
sources were also performed. The source density was varied
with sample dimensions, accordingly. We place one dislo-
cation source on each of the eight activated slip systems
of the fcc crystal. The average source length was set to
L ¼ 0:4 lm, while the standard deviation was set to
d = 0.08 lm. The responses for pillars with side length
varying from 0.3 to 1.6 lm are displayed in Fig. 9a. As
shown in the plot, cases with a greater than 0.8 lm exhibit
a quite smooth stress–strain response. This reveals a pro-
gressive transition from the linear regime to the nonlinear
one. The transition begins with the activation of sources
and ends with the establishment of an approximately
steady-state plastic regime. Examination of Fig. 9a reveals
that the flow stress increases with the increase of sample
size. This is attributed to the decrease of the source density
with the increase of the sample dimension, noting that the
numbers of sources are the same for all the samples. A sali-
ent feature revealed by these results is that extremely low
hardening is displayed after yielding. Dislocation trapping
or immobile-dislocation storage is barely observed in the
simulations. The extremely low hardening was also exhib-
ited in the testing of single-crystal micropillars [10].

For cases with a smaller than 0.8 lm, the stress–strain
curves exhibit other features as a result of the discreteness
of the dislocation-source activation process and strong
interactions between the Frank–Read sources and the free
surfaces. Note that, in these cases, the sizes of the Frank–
Read sources are close to the sample characteristic dimen-
sion a. The distance between the pinning points and the
boundaries is then typically smaller than the distances



1/(a(<N>)0.5) (μm0.5 )

F
lo

w
 S

tr
es

s 
at

 1
.0

%
 S

tr
ai

n 
(M

P
a)

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

Strain

S
tr

es
s

(M
P

a)

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
0

50

100

150

200

250

300

350

400

450

500

0.3 μm
0.4 μm
0.8 μm
1.0 μm
1.2 μm
1.6 μm

a

b

Fig. 9. (a) Stress–strain curves for pillars of various cross-sections. The
activated-source number was fixed at 8 in the simulations. The average
source size was L ¼ 0:4 lm, with standard deviation d = 0.08 lm. For the
cases a = 0.3 lm and a = 0.4 lm, stress steps are observed in the transition
from elasticity to plasticity. (b) The flow stresses at 1.0% strain are shown
as a function of 1=ða
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p
Þ. A linear dependence is displayed for cases

with relatively large sample sizes. For the cases in which the sample sizes
are close to the average dislocation source length, the progressive change
of the Frank–Read sources increases the source activation stress, leading
to higher flow stress. This is the case for simulation results plotted as solid
triangle symbols, a = 0.3 lm and a = 0.4 lm.
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Fig. 10. Flow stress vs. source-activation stress. (a) Effect of characteristic
dimension. The activated source density is held fixed to ÆNæ = 2 lm�3.
(b) Effect of the density of activated sources. The sample dimension was
held fixed with a = 1.0 lm. M ¼ 1=

ffiffiffi
6
p

is the Schmid factor for the loading
direction.
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between pinning points. Therefore, the Frank–Read source
develops into a pair of spiral sources under loading [25],
and the final source activation stress is actually determined
by the distance between the pinning point and the bound-
ary. Such stress can be significantly higher than that for
activating the Frank–Read source itself. An interesting fea-
ture highlighted by the oval shown in Fig. 9a is the forma-
tion of stress steps. This reflects the discontinuity of source
operation. Some sources with larger lengths are activated
at a lower applied stress, leading to the detectable plastic
flow reflected by the stress steps. However, the operation
of these sources gets aborted soon after the first activation
due to the proximity of free surfaces. These sources are
generally reactivated at a much larger applied stress.

We plot in Fig. 9b the flow stress at 1.0% permanent
strain for the responses shown in Fig. 9a as a function of
1=ða

ffiffiffiffiffiffiffiffi
hNi

p
Þ. It is noted that, for cases with sample sizes

greater than 0.6 lm, a linear relationship between the flow
stresses 1=ða

ffiffiffiffiffiffiffiffi
hNi

p
Þ and is revealed. This is in good agree-

ment with the analytical relation described by Eq. (14).
For the cases with a = 0.3 lm and 0.4 lm, however, the
flow stresses are higher than those estimated from the lin-
ear relationship given by Eq. (14). In these cases, the inter-
actions between dislocations and surfaces modify the value
of L, as stated earlier. Hence, the critical source-activation
stress in these cases indeed becomes larger than that for
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activating an isolated Frank–Read source. For cases with
relatively large source strengths, the overall flow stress
tends to become source-strength controlled, as discussed
next.

4.3.3. Effects of source-activation stress
The dependence of flow stress on source strength was

also investigated in this study. In Fig. 10a and b, the
relationships between the flow stresses at 1.0% permanent
strain and the average source-activation stresses are
displayed. Fig. 10a displays the flow stress vs. source-
activation stress for two different sample sizes. The densities
of activated sources was fixed at ÆNæ = 2 lm�3. In Fig. 10b,
the effects of the number of activated-source densities on the
flow stress vs. source activation stress are illustrated. Two
cases, ÆNæ = 2 and 4 lm�3, are compared for a fixed sample
dimension a = 1.0 lm. It is noted that two regions can be
clearly identified in these two plots. One is the flat region
in which the flow stresses are independent of the source-
activation stresses. In this region, the applied stresses
resolved in the active slip systems are typically more than
twice the source-activation stresses. Under this condition,
the dislocation average velocity approaches the velocity
limit in free flight, which is viscous-drag controlled [23].
The flow stress is dominated by the size- and source den-
sity-dependent term on the right-hand side of Eq. (14). In
the other region, the applied stresses resolved in the active
slip systems become less than twice the source-activation
stresses. As a result, the average dislocation velocity can
be much smaller than the free-flight velocity limit. In this
regime, the flow stresses are shown to increase with increas-
ing source-activation stresses. Size effects on the flow stress
are still observed in this region with a decreasing trend. For
extremely high source strengths, the flow stress is expected
to become entirely source-activation controlled.

5. Concluding remarks

The present study has shown that dislocation escape
through free surfaces plays a significant role in the size-
dependence of the plastic response of single-crystal micro-
pillars under compression. In terms of the evolution model
of dislocation density presented in this study, the mobile-
dislocation density at steady state is a linear function of
the applied stress, the activated-source density and the
sample dimension squared. This is restricted to the high-
velocity or high-stress regime for a fixed number of disloca-
tion sources.

The mechanisms dominating the size dependence of the
plastic response shown in this study are different from
those discussed in Deshpande et al. [13] and Benzerga
and Shaver [14]. In Ref. [13], the predicted size effects were
attributed to obstacle-limited behavior. Benzerga and Sha-
ver [14] emphasized the importance of the length of sources
on the observed size effects. The length of sources generally
increases with increasing sample size. Thus, a lower stress is
required on average to initiate plastic flow for a larger sam-
ple. Here we show that the size dependence of flow stress
can be totally independent of source strength and obstacles
in the high-stress or high-velocity regime. For a fixed strain
rate, we show mathematically that the flow stress at steady
state is related to both the sample dimension and the den-
sity of activated sources in terms of the relationship
r / 1=ða

ffiffiffiffiffiffiffiffi
hNi

p
Þ. The size-dependent stress–strain response

is essentially dominated by the dislocation-escape
mechanism.

Since the experimentally observed compressive flow
stress in micropillars is significantly larger than that in
the bulk crystal, it is reasonable to assume that the plastic
deformation behavior exhibited by these micropillars falls
in the high-velocity or high-stress regime. Thus, it is possi-
ble to use the relationship described by Eq. (14) to explain
the experimentally observed size effects. In terms of Eq.
(14), the flow stress should scale as l/a for a fixed density
of activated sources. This reveals a stronger size effect than
that shown in Ref. [11]. One possible explanation that
would account for this discrepancy is that the number of
activated sources per unit volume for smaller samples is
likely larger than that for larger samples. Since the pillars
are fabricated by focus ion beam etching of a substrate, sta-
tistically it is quite probable that is the case. In addition,
other mechanisms related to the stress-dependent disloca-
tion sources which may scale with sample sizes cannot be
excluded. The present study has also shown that the flow
stress tends to become source-strength controlled with
increasing source-activation stress.

In the present study, we are restricted to using a fixed
number of sources in the simulations. This excludes the
effects of possible source change on the compressive
response of micropillars. For example, some sources may
be deactivated or exhausted due to the change of source
configurations during loading. This will lead to the harden-
ing or even shutting down of the plastic flow. An improved
understanding of source operation mechanisms in micro-
pillars under compression appears to be important in order
to shed more light on the experimentally observed size
effects. This has been a primary goal in our ongoing study.
However, we believe that the results from the present study
do provide insight into what can be expected to occur in a
more complex system.
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