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SUMMARY

Ionic compounds pose extra challenges with the appropriate modeling of long-range coulombic interac-
tions. Here, we study the mechanical properties of zinc oxide (ZnO) nanowires using molecular dynamic
simulations with Buckingham potential and determine the suitability of the Ewald (Ann. Phys. 1921; 19)
and Wolf (J. Chem. Phys. 1999; 110(17):8254–8282) summation methods to account for the long-range
Coulombic forces. A comparative study shows that both the summation methods are suitable for modeling
bulk structures with periodic boundary conditions imposed on all sides; however, significant differences
are observed when nanowires with free surfaces are modeled. As opposed to Wolf’s prediction of a
linear stress–strain response in the elastic regime, Ewald’s method predicts an erroneous behavior. This
is attributed to the Ewald method’s inability to account for surface effects properly. Additionally, Wolf’s
method offers highly improved computational performance as the model size is increased. This gain in
computational time allows for modeling realistic nanowires, which can be directly compared with the
existing experimental results. We conclude that the Wolf summation is a superior technique when modeling
non-periodic structures in terms of both accuracy of the results and computational performance. Copyright
� 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Owing to the difficulties encountered in the experimental investigation of the mechanical behavior
of nanomaterials, computational methods play a major role in determining their properties. The
relevant methods, involving atomic scale modeling, can be broadly classified into two cate-
gories: (i) ab initio methods and (ii) Molecular Dynamics (MD) methods based on semiempirical
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two-body, three-body, and many-body potentials (e.g. Embedded Atom Method-based potentials
[1] and biomolecular force fields like CHARMM [2]). Ab initio methods are known to predict
material behavior and properties very accurately but are very expensive computationally and do
not allow for modeling of large systems with realistic dimensions (having a few million atoms).
On the contrary, MD methods that do not calculate electronic structures completely can be used
to model relatively larger systems. In this work, we chose to model zinc oxide (ZnO) as a case
study.

Zinc Oxide (ZnO) offers a unique combination of semiconducting and electromechanical prop-
erties, which makes it a suitable candidate for various nanoscale applications. ZnO nanowires
have attracted much attention in applications in high-power optoelectronic devices, logic circuits,
piezoelectric devices, nanoresonators, and electromechanically coupled nanocantilever sensors due
to their excellent semiconducting, piezoelectric, and biocompatible properties. Accurate knowl-
edge of their mechanical properties is a crucial factor in designing such devices with predictable
and reproducible operation. The small dimensions of the nanostructures, however, raise serious
challenges for the experimental investigation of properties relevant to their application. Therefore,
a two-fold approach involving computational modeling is relevant and important.

In the context of modeling ZnO, MD methods have been used to predict the mechanical prop-
erties of bulk ZnO [3]. The short-range interatomic interactions are usually modeled using a
Buckingham-type pairwise potential; however, different mathematical techniques have been devel-
oped to efficiently calculate the long-range forces. The traditional Coulomb summation results in
a converging equation only under specific conditions. In the literature, this problem is referred
to as the Madelung problem [4]. The Madelung problem was solved with the Ewald summa-
tion [5], which through certain mathematical manipulations calculates the conditionally conver-
gent O(r−1) Coulomb summation. It has been used to model proteins [6, 7], salt compounds
[8], semiconductors [9, 10], and other materials. The Ewald summation, however, assumes peri-
odicity of the modeled system and its application in physically non-periodic systems such as
liquids, amorphous solids, and nanostructures is questionable [11]. To cope with the problem
of non-periodic systems and at the same time to increase computational efficiency, Wolf et al.
[12] presented a new method for evaluating the Coulomb potential. Wolf’s method has gained
popularity in recent years and is being widely used. In our recent work, we used this method
to simulate tensile tests on nanowires as large as 20 nm in diameter [13, 14]. Using a combined
experimental–computational approach, we reported that Young’s modulus of nanowires increases
with decreasing diameters and the effect is prominent when the diameter is smaller than 80 nm.
The observed size effect was explained based on the surface reconstruction and increasing surface-
to-volume ratios. The key to model surface effects properly and to model larger nanowires
efficiently was the utilization of Wolf’s summation method, which will be discussed in this
paper.

The objective of this work is to address the applicability of the Ewald summation in modeling
non-periodic structures, as little comparison between the Ewald and Wolf summations on non-
periodic structures exists in the literature. First, we discuss the theoretical background of the Ewald
and Wolf summation techniques. Then the mechanical properties of periodic bulk ZnO structure as
predicted by Ewald’s methods are presented and compared against the experimental values. Using
Ewald’s results as a benchmark for modeling bulk ZnO, the optimal mathematical parameters
required in the Wolf’s formulation are determined. Simulated tensile tests on nanowires ranging
from 2.4 to 7.5 nm in diameter using both summation methods are then compared. Finally, the
gain in computational efficiency offered by Wolf’s summation is reported.
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2. THEORETICAL BACKGROUND

In this section, we briefly present the theoretical basis of the Ewald and Wolf summation methods.

2.1. Ewald summation method

The Ewald summation for calculating long-range coulombic interactions is derived from the
Coulomb sum, which gives the resultant total energy of a system of N charges qi at position ri :

Ecoul = 1

2

N∑
i=1

∞∑
j �=i=1

qi q j

rij
(1)

Equation (1) is conditionally convergent when the system of charges is truncated to a sphere of
radius Rc, as is common in MD simulations. The Ewald summation converts this equation into a
sum of convergent equations by performing the following mathematic manipulations [5]:

1. Structural periodicity is enforced and Equation (1) is multiplied by unity by means of the
error function and complimentary error function.

EEwald = 1
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2. The Fourier transform of the error function term is taken (but not of the complimentary error
function term) yielding the final Ewald equation:
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In Equations (2) and (3), n is a vector denoting the periodic image of simulation box L and k
is a reciprocal space vector. In the implementation of the Ewald summation � is picked to be
relatively large, such that the Ewald summation converges [11].

2.2. Wolf summation method

The Wolf summation is based on the observation that the Coulombic summation does not converge
as a result of the potential non-neutrality of the total charge contained within the spherically
truncated system of radius Rc [12]. Furthermore, the Wolf summation relies on the fact that if
charge-neutralization of such a system is achieved, the correct equivalent system energy can be
computed [15]. Thus, the equation for the Wolf summation is developed in three steps [12].

1. The system contained within Rc is charge neutralized. The charge neutralization is achieved
by the use of the key observation that within the sphere of radius Rc, the charges that are not
balanced are on the surface of that sphere. As such, when calculating the energy contained
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in that sphere, the Wolf summation subtracts a term representing the energy on the surface
of the sphere:

Echarge,neutral = 1

2

N∑
i=1

∑
j �=i rij<Rc

qi q j

rij
− lim

rij→Rc

qi q j

rij
(4)

The first term of Equation (4) represents the traditional Coulombic sum and is the same as
Equation (1), while the second term represents the unbalanced surface charges, which are
subtracted from the total energy.

2. As shown by Adams [15], computing the charge neutralized energy of a spherically truncated
system (step 1) approximates shifting the correct energy of the system by a constant. This
constant can be computed by:

E shift = 1

2Rc

N∑
t=1

q2
t (5)

Therefore, the approximate correct energy of the spherically truncated system is given by
subtracting Equation (5) from Equation (4):

EWolf = 1

2
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3. A damping function is applied in order to make the Wolf summation computationally more
efficient. It is important to note that Equation (6) converges to the correct energy value
for high values of Rc and in particular when Rc�a, the interatomic distance [11]. While
it is theoretically possible to use Equation (6) directly in computer simulations, Rc would
have to be too high for computational efficiency. As such a damping function is applied to
Equation (6), yielding the final Wolf summation equation:

EWolf = 1
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In Equation (7), variable � is introduced as a damping coefficient. Higher values of � allow
convergence for lower values of Rc.

3. COMPUTATIONAL METHODOLOGY

In this work, modeling of ZnO was carried out with large-scale atomic/molecular massively parallel
simulator (LAMMPS) developed at Sandia National Laboratories [16, 17]. We augmented the
LAMMPS package to implement the Wolf summation method for modeling coulombic interactions.
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Table I. Comparing different bulk material properties as calculated in this work with earlier reported
experimental and computational values.

Ewald method Wolf method
Material Experimental
property [Ref] Reference [1] This work This work

Lattice constants (Å) at 300 K a 3.249 [18] — 3.212 3.218
c 5.204 [18] — 5.149 5.158
u 0.382 [18] — 0.380 0.380

Elastic constants (GPa) at 0 K C11 209.7 [18] 232.5 221.9 209.1
C12 121.1 [18] 95.2 86.3 89.9
C13 105.1 [18] 85.6 75.0 71.6

Lattice energy (eV) E −42.03 [19] −39.33 −39.33 −39.34

The atomic interactions were modeled with the Buckingham potential, expressed in Equation (8):

E total =
N∑

i=1

∞∑
j �=i

A exp

(
rij

�

)
− C

r6
ij

+ E long(rij), (8)

where rij is the distance between two atoms in a cell. A, C , and � are parameters defining the
short-range interactions and Elong(rij) represents the long-range electrostatic interactions based
on the ionic charge. Elong(rij) is calculated by Equations (7) and (3) with the Wolf and Ewald
summations, respectively. The constants identified by Binks were used in the calculations for
modeling the short-range interactions with a cut-off radius of 8.5 Å [3].

To begin, simulations were performed on bulk ZnO using the Ewald summation method, which
has been employed earlier [3]. A cell of bulk wurtzite ZnO, with 1440 atoms and periodicity
applied on all sides, was initially allowed to relax at 300 K for 30 ps, long enough for the energy
and the pressure of the system to stabilize. The lattice constants were measured from the relaxed
lattice structure and are summarized in Table I. Then, a quasi-static loading scheme was employed
in two steps: (i) the structure was deformed along the a axis in increments of 0.5% strain over a
period of 1 ps (ii) the structure was allowed to relax only in the direction of the elastic constant
being calculated for 30 ps, under NPT conditions using the Nose–Hoover thermostat [17]. The
virial stresses [20] were calculated and plotted against the strain in order to calculate the elastic
constants. Elastic constants C11, C12, and C13 were calculated in this fashion and are reported in
Table I. A good agreement in the lattice and elastic constants was achieved when compared with
the previously obtained results using this methodology [3]. The results obtained from modeling
bulk ZnO, using Ewald’s method, were then used as a baseline to develop parameters for Wolf’s
method. The calculations performed to identify appropriate parameters required in Wolf’s method
are described next.

3.1. Determination of the optimal wolf summation parameters

The lattice energy and pressure, when modeled with Wolf’s method, were found to be oscillatory
functions of the cut-off radius Rc with dependence on the damping coefficient �. Convergence
studies were performed in order to determine the optimal values of � and Rc for modeling bulk
ZnO accurately. The same cell of bulk wurtzitic ZnO (as described in the previous section) was
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analyzed using Ewald’s and Wolf’s methods. Energy minimizations were performed at absolute
zero temperature. This simulation was performed for two values of � and repeated for increasing
values of Rc for both values of �. The lattice energy and pressure as calculated by the Wolf
summation were plotted against Rc for the different � values. The results were compared against
the Ewald predictions, as the Ewald method suitably applies to periodic structures. The results of
this convergence study are shown in Figures 1 and 2.

Figures 1 and 2 show the lattice energy and pressure of bulk ZnO as a function of cut-off radius
Rc for multiple values of damping coefficient �, respectively. Convergence is achieved when Rc is
much greater than the lattice constant a =3.2Å, as determined by Demontis et al. [11]. Furthermore,
the effect of damping coefficient � is evident as a higher value of � leads to faster convergence.

Figure 1. The lattice energy (eV/molecule) of ZnO as modeled with the
Wolf summation and Ewald summation.

Figure 2. The system pressure (bar/molecule) of ZnO as modeled with
the Wolf summation and Ewald summation.
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A tradeoff is observed between the computational efficiency and accuracy. Lower values of Rc
improved computational time, but the accuracy is decreased. Given this tradeoff it is important to
determine a set of values for parameters � and Rc such that relative computational efficiency and
accuracy are maintained.

Given the theoretically predicted O(N 3) relation of computational time to cut-off radius Rc and
the importance of computational efficiency, a cut-off radius Rc of 7 Å was selected as optimal.
The damping coefficient � was chosen by observing that for �=0.4 the summation has converged
at Rc =7Å and is sufficiently close (<1% difference in lattice energies) to the value predicted by
the Ewald summation (see Figures 1 and 2). The optimal parameters identified for Wolf’s method
were then used to calculate the elastic constants for bulk ZnO, which are summarized in Table I for
comparison. The Ewald and Wolf summations predict very similar lattice parameters and lattice
energy (Table I) in this work and are in excellent agreement with the lattice energy parameters
reported in [3] and the lattice energy reported by the CRC Handbook [19]. This indicates that the
Wolf summation can predict the bulk lattice properties of ZnO as equally well as the traditionally
used Ewald summation. This attests to the Wolf method’s suitability and allows its application in
predicting further properties of ZnO with high confidence.

The two methods, Ewald and Wolf, were then applied to model [0001]-oriented ZnO nanowires
to verify their suitability to predict the material behavior in presence of free surfaces. Nanowires
with diameter 5.0 and 7.5 nm were modeled using both the methods. The details of modeling and
the results are described in the next section.

3.2. ZnO nanowires Young’s modulus

ZnO nanowires orientated along the [0001] crystallographic axis and of hexagonal cross-section
(Figure 3) were modeled. Nanowires ranging from 2.4 to 7.5 nm in diameter were modeled using
the Ewald and Wolf methods and were compared. Periodic boundary conditions were imposed
in the axial ([0001]) direction and an aspect ratio of ∼3:1 was maintained for all simulated
nanowires. A quasi-static loading scheme was employed in which a wire was uniformly strained
to the desired level over a period of 400 ps under NVT conditions and then allowed to minimize
at 0 K. The virial stresses were calculated for each level of strain for all nanowires and Young’s
moduli were found from the slope of the elastic region of the stress–strain curves.

Figure 4(a) shows the stress–strain response as predicted by the two methods. Zero strain refers to
the configuration with lattice constants the same as bulk lattice constants along the axial direction.
A compressive stress at 0% strain is the result of surface stresses which decreases with increasing
wire diameter. This effect results in the size dependence of the elastic modulus in ZnO nanowires,
as described elsewhere [13]. Qualitatively, both the summation methods predict similar surface
effects; however, Wolf’s method, in contrast to Ewald’s method, predicts a perfectly linear elastic
response.

Table II compares Young’s moduli of different nanowires as predicted by the two methods. For
the Ewald results, the modulus is obtained by fitting a linear curve to the stress–strain data. Even
though the Ewald summation predicts reasonable Young’s Moduli (Table II), the erratic stress–
strain response casts doubt to the applicability of the Ewald summation in modeling non-periodic
structures. It is noteworthy that the error consistently increases with increasing wire diameter,
which suggests that the error associated with Ewald formulation scales with the surface area.

To further understand the differences between the results of the two methods, the radial displace-
ments were analyzed (Figure 5). As the axial dimension is fixed during minimization and defined
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Figure 3. As modeled hexagonal cross-section of a [0001]-oriented ZnO nanowires and
a close-up of its wurtzitic atomic structure.

Figure 4. (a) Stress–strain response as predicted by Wolf and Ewald methods for different
nanowires and (b) volumetric strain as a function of the applied axial strain for all the

nanowires. Same legend applies to both the figures.

by the applied axial strain, the atoms reconstruct in the radial direction in the presence of free
surfaces. As shown in Figure 4(b), with increasing strain, Wolf’s method predicts a more physical
response showing that the nanowire contracts in the radial direction monotonically as the axial
strain is increased. This monotonic response is expected as an outcome of Poisson’s effect. On the
contrary, Ewald’s method predicts a fluctuating behavior. This effect of the radial reconstruction
is also plotted in the form of volumetric strain in Figure 4(b). The fluctuations in the volumetric
response, as predicted by Ewald’s method, increase with increasing wire diameter. This confirms
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Table II. Young’s modulus of ZnO nanowires as predicted by using the Wolf and Ewald summations.

Wire diameter Temperature Number of Young’s modulus, Young’s modulus,
(nm) (K) atoms modeled Ewald summation (GPa) Wolf summation (GPa)

2.4 0 2688 239 242
3.6 0 6912 208 214
5 0 23040 194.7 201.4
7.5 0 77760 177.7 190.4

Figure 5. A cross-section of a 5 nm nanowire as simulated with both the Ewald and Wolf summations.
The color map shows displacements with respect to the bulk lattice configuration.

Table III. The performance in terms of time taken for each timestep per atom per cpu
for nanowires of different diameters.

Nanowire size (nm), Number of atoms Ewald time (ms) Wolf time (ms) Gain

2.4 nm (2688 atoms) 5.8 1.9 3.1
3.6 nm (6912 atoms) 33 6.4 5.2
5.0 nm (23040 atoms) 329 19 17.3
7.5 nm (77760 atoms) 8742 87 100

that Ewald formulation is not capable of modeling free surfaces accurately and the error increases
with increasing surface area.

3.3. Computational efficiency comparison

In addition to the inaccuracies associated with Ewald’s method in the modeling of non-periodic
structures, we observed vast differences in computational times associated with the two methods.
The run times for tensile test simulations were recorded for nanowires of different diameters.
For a direct comparison of computational times, the simulations were run on 256 processors of
the Argonne National Laboratory’s Intrepid BG/P system for 5 and 7.5 nm diameter nanowires
and on eight processors of our local cluster for 2.4 and 3.6 nm diameter nanowires. Intrepid is
the world’s fifth fastest supercomputer with 163 840 processors and a peak performance of 557
teraflops [21]. The time required per MD timestep is summarized in Table III. It is important
to point out the significant gain in the computational performance achieved with Wolf’s method.
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The computational gain increases with the increasing number of atoms, which is consistent with
the fact that Wolf’s method should scale as order N and Ewald as a higher power of N (N , being
the number of atoms in the model).

This significant gain in computational times allowed us to model nanowires as large as 20 nm
in diameter, with proper accounting of long-range interactions. The importance of this has been
emphasized in our recent work [13], where we bridged the gap between experiments and modeling
by presenting a direct comparison. Experimentally, Young’s modulus of ∼160GPa was measured
via in situ tensile tests which agreed very well with the computational predicted value of ∼169GPa
at 300 K. Additionally, the size dependence of the elastic modulus was explained based on the
surface reconstructions which would not have been possible with Ewald’s formulation.

4. CONCLUSION

In conclusion, we establish that the Ewald summation should be applied to non-periodic structures
with great caution. While there is a little difference between the Ewald and Wolf summation
techniques when modeling bulk ZnO, the Ewald summation does not inspire confidence in modeling
nanowires with free surfaces. This is in accordance with the Ewald theory which assumes that
the modeled structure is periodic. We showed that while the Wolf summation predicts a linear
stress–strain response for ZnO nanowires, the response predicted by the Ewald summation is
erratic. The error, as predicted by the Ewald’s method, increases with the increasing model sizes.
Prior to modeling nanowires, convergence studies were performed in order to determine the ideal
parameters of the Wolf summation for modeling ZnO. It was shown that with these parameters the
Wolf summation can perform up to 100 times faster than the Ewald summation, depending on the
model size. This is a significant advantage over the Ewald summation as it allows for the simulation
of experimentally tested nanowires, which would not be possible with the Ewald summation. We
judge that the Wolf summation offers a superior alternative when modeling non-periodic structures.
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XIX:524–533.

5. Ewald PP. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Annalen der Physik 1921; 369(3):
253–287.

6. Chandrasekaran V, Lee CJ, Lin P, Duke RE, Pedersen LG. A computational modeling and molecular dynamics
study of the Michaelis complex of human protein Z-dependent protease inhibitor (ZPI) and factor Xa (FXa).
Journal of Molecular Modeling 2009; 15(8):897–911.

7. Schreiber H, Steinhauser O. Cutoff size does strongly influence molecular-dynamics results on solvated
polypeptides. Biochemistry 1992; 31(25):5856–5860.

8. Dokurno P, Lubkowski J, Czerminski J, Blazejowski J. Electrostatic energy in inorganic and organic salts
containing octahedral SNCL6(2-) ion. Australian Journal of Chemistry 1991; 44(6):779–789.

9. Minary P, Morrone JA, Yarne DA, Tuckerman ME, Martyna GJ. Long range interactions on wires: a reciprocal
space based formalism. Journal of Chemical Physics 2004; 121(23):11949–11956.

10. Kulkarni AJ, Zhou M, Ke FJ. Orientation and size dependence of the elastic properties of zinc oxide nanobelts.
Nanotechnology 2005; 16:2749–2756.

11. Demontis P, Spanu S, Suffritti GB. Application of the Wolf method for the evaluation of Coulombic interactions
to complex condensed matter systems: aluminosilicates and water. Journal of Chemical Physics 2001; 114(18).

12. Wolf D, Keblinski P, Phillpot SR, Eggebrecht J. Exact method for the simulation of Coulombic systems by
spherically truncated, pairwise r-1 summation. Journal of Chemical Physics 1999; 110(17):8254–8282.

13. Agrawal R, Peng B, Gdoutos EE, Espinosa HD. Elasticity size effects in ZnO nanowires—A combined
experimental–computational approach. Nano Letters 2008; 8(11):3668–3674.

14. Agrawal R, Peng B, Espinosa HD. Experimental–computational investigation of ZnO nanowires strength and
fracture. Nano Letters 2009; 9(12):4177–4183.

15. Adams DJ. On the use of the Ewald summation in computer-simulation. Journal of Chemical Physics 1983;
78:2585.

16. http://lammps.sandia.gov.
17. Plimpton SJ. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics

1995; 117:1–19.
18. Landolt-Bornstein. In Group III Condensed Matter, Madelung O (ed.), vol. 41B. Springer: Berlin, 1999.
19. Lide DR (ed.). Lattice energies of solids. CRC Handbook of Chemistry and Physics (89th edn) (Internet Version

2009). CRC Press, Taylor and Francis: Boca Raton, FL, 2009.
20. Zimmerman JA, Webb Jr EB, Hoyt JJ, Jones RE, Klein PA, Bammann DJ. Calculation of stress in atomistic

simulation. Modelling and Simulation in Materials Science and Engineering 2004; 12:S319–S332.
21. Top500 Supercomputing Sites, November 2008. Available from: http://www.top500.org/.

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 84:1541–1551
DOI: 10.1002/nme


