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C. H. Ke In this paper, a nonlinear theory applicable to the design of nanotube based devices is
H.D. Espinosaz presented. Th_e role of finite kinematics f_or a doubly clamped nar_10tube_ _device i_s investi-
gated. In particular, we analyze the continuous deformation and instability (pull in) of a
clamped-clamped nanotube suspended over an electrode from which a potential differ-
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Evanston, 1L 60208-3111 Likewise, accurate prediction of pull-in/pull-out voltages is highly needed. We show that
an energy-based method can be conveniently used to predict the structural behavior and
instability corresponding to the ON/OFF states of the device at the so-called pull-in
voltage. The analysis reveals that finite kinematics effects can result in a significant
increase of the pull-in voltage. This increase results from a ropelike behavior of the
nanotube as a consequence of the stretching imposed by the actuation.
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1 Introduction of several nanotubes—and nanowires—having differenltly shaped
cross sections possess an extremely high stiffne§g¥oung’s

. i e . X ; modulus of the order of 1 TPE7,8]) and flexibility (strain at
interest in the scientific community, since the discovery of nano=sile failure of the order of 3098]). As a consequence of this

tgbes[l]. '_I'he f'rSt. really true _carbon-nanotube-bas_ed NEMS d?érge flexibility, the effect of the large displacements, usually ne-
vice, fully integrating electronic control and mechanical respons

Sl’ected in analytical calculations, has to be considered in the
was developed only some months d@d. The authors reported analysis of NEMS.

the construction and successful operation of a fully synthetic spite of the described fast acceleration in developing NEMS
narlolsczill(;:‘ elefﬁromecnan'cﬁ“ dactustor |ncotrpt())rat|ng_ a rm?@k?uctures, key formulas needed in their design are still absent in
metal piate, with a mufti-walled carbon nanotube serving as rfl‘?e literature. The first extensive investigation of the behavior of
key motion-enabling element. Rueckes et (8] investigated @ nq1he-based devices has been recently reppt@d In that

carbon nanotube-based nonvolatile random access memory by flese, “1he differential equation of the elastic line of a nanotube

Nanoelectromechanical systenldEMS) are attracting much

high integration level of the nanoswitches, approachinf 8- tin,ym mechanics, assuming small displacements. The corre-

ments per square centimeter, and an element operation frequeg}ggnding pull-in voltages, at the structural instability, were

in excess of 100 GHz. The viability of the concept was demoRsajyated for different case studies. In addition, the first attempt to
strated by the experimental realization of a reversible bista

) tain an analytical formula for the pull-in voltage of the nano-
nanotube-based bit. If4] the development of nanotweezers wag pe was also proposed, assuming for the nanotuptatlike

reported. The mechanical capabilities of the nanotweezers wegejoformed shape, connected via a lamped stiffness to the ground
demonstrated by grapping and manipulating submicron clustgfigctrode. As emphasized by the same authors, the proposed for-

and nanowires. o _ mula was not able to reproduce accuratetly all their numerical
In this context, the characterization of mechanical and elegsg s

tronic properties of nanotubes has been the subject of intense rey, this paper we present a nonlinear energy-based theory for the
search. Their small size, low density, high stiffness, flexibility, angrediction of the pull-in voltage of doubly clamped nanotubes
strength, as well as excellent electronic properties, suggest {jgher stretching. The equilibrium condition as well as the insta-
nanotubes and nanowires are the most promising nanoscopic gffiry of the nanotube is obtained, respectively, by setting to zero
ments in the implementation of NEMS. For a recent review on thge first and the second derivatives of the free energy of the sys-
mechanics of carbon nanotubes the reader should refer to the a; A comparison between analytically predicted pull-in voltages

per by Qian et al[5], and references therein. The strength ofnq those obtained by numericaliy solving the corresponding gov-
carbon nanotubef6], was found to be of the order of 10-100gning equations is also provided.

GPa. Furthermore, nanotubéss well as nanoropes—composed

- 2 Elastic Line Equation of the Nanotube Under Finite
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ud cant only for very small gaps, i.e., few nanometeta the dy-
namic regime, the damping and inertia forces must be also added
TFH (e.g., to consider variable applied voltages, thermal vibrations,

free vibrations, and so ¢nAccording to these considerations, the
complete expression of the elastic line equation for a nanotube

l r=H device is
I: ] PW Pw
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whereu andy represent the mass and the damping per unit length
_\-/’_. of the nanotube antis the time. The Pauli force per unit length
Naroewitzh OGN gp is obtained from the repulsive part of the Lennard-Jones poten-
) ) tial [10]. From theQ-factor of the nanotubé¢between 170-500
Fig. 1 Schematics of doubly clamped nanotube based [11)), y=pwo/ Q, Wherewy is its fundamental rotating frequency.

nanoswitches and nanotweezers The term[1+(ow/9z)2]%2 represents the correction for the curva-

ture, that must be considered under large displacements. The term
_ _ _ cos9=(1+(ow/d2)2~Y2 has to be introduced to consider the
The electrostatic and van der Waals energies per unit length Gaanging in the positions of the loads that remain pependicular to

be evaluated by the following relationshif0]: the nanotube axis, as a consequence of the large displacements,
dEqpec meQV2 involving not necessarily small rotations of the cross-section by
= , an angled. For a clamped-clamped nanotube the axial force is
cosh‘l<1 n L) equal toN(w)=EA/ 2L [§(ow/ 52)?dz
R Some interesting results were obtaif&@] by solving numeri-

Roq FingHNg-1)d cally Eq. (3). The more general Ed4) was also solved numeri-
dE,qw T mCen?d?R(r + R)[3R?+ 2(r + R)?] cally [12,13. On the other hand, here we prefer obtaining an
?:g r; 2[(r +R2-Re]? ' analytical solution under simplified hypotheses for the pull-in

"~ it ~lint

voltage, corresponding to the quasistatic collapse of the nanotube,
(1) i.e., assumingy=u=0. Instead of solving Eq4) in an approxi-
mate way, we will obtain the equilibrium and the instability of the

wherezs the axial coordinate of the cantilever nanotug, and Qanosystem by minimizing the free energy and its first derivative.

R=R,, are the inner and outer radius of a multiwalled nanotub
Ng is the number of layers in the substrgtgapheng d is the )
interlayer distance(for graphite d=0.335 nm. In addition,r 3 Small Deformation

=rin is the gap between the nanotutexternal wall and the v consider a clamped-clamped nanotube of letgtfor the
surface layer of the substrat«i wheres tge zitsomlc denS|_ty, that small deflection case of a clamped-clamped nanotube loaded by a
for graphite is equal ton=1.14x10°m™=, and £,=8.85 cgnstant force per unit length, we assume a functitz) satisfy-

X 10712 C?N™tm2 is the vacuum permittivity. ; ” _ (e _
ng the boundary conditions(z=0,L)= =0,L)=0, namely,
The corresponding forces per unit lengfh.. andg,qw can be "9 ) y ltions( )=w'(@ ) 4

H 2 3 4
evaluated, according to E¢L) as WD) ~ 16[<E> _ 2(5) . <E> ]c, )
__ d(dEgedd2) __ d(dE,qw/d2) L L L
Oelec™ —dr v Ovaw =~ -~ dr ’ wherew(z=L/2)=c is here an unknown constant that represents

. . e e displacement of the central point.
Based on continuum mechanics, the quasistatic structural B@ ) . .
havior of the nanotube, can be obtained solving the elastic IineAS a consequence, the elastic energy, assuming small displace-

) ments, as well as the electrostatic and van der Waals energies
equation, namely, stored in the nanotube can be obtained by integration as

d*w W(Rgxl_ Rﬁn) t
El— = Quaw+ | = —=¢ 3 El d?w)\?
dZ4 Qvaw * Qeleo 4 ( ) Eelas(c)zgj (E) dZ, (6&)
wherew(z)=H-r(2) is the nanotube deflectiofi is the nominal 0
gap between nanotube and electrode, Ensl the Young's modu- Ly
lus of the nanotube, with moment of inertia EgiedC) = f Ee'ec’VdeF{r[W(z)]}dz, (6b)
It is important to underline that E¢3) assumes small displace- 0 dz

ments. On the other hand, due to the large flexibility of the nano-
tube, the role of the finite kinemati¢karge displacemenkzould
become relevant. According to these considerations, we hav

We investigate the validity of the form of E¢G) by evaluating
othe associated fundamental frequency and by comparing it with

consider the complete expression for the elastic curvature. In QE@ well-known value for a clamped-clamped nanotube. Equating
dition, it is important to note that large deformations could imply"€ maximum values of the flaSt'C s;raln energy of ©q) and of

for doubly clamped nanotubes, also the stretching of the elemelfi@ kinetic energy(t)=1/2/q(dw/dt) udz, with « mass per unit
Finally, under large deformations, the electrostatic forces, dength of the nanotube, during its free-vibration wit(z,t)
thogonal to the surface of the nanotube, have to be consideretV(z)sinwot, one finds the estimation of the fundamental fre-
with respect to the deformed configuratibme neglect the effect quencywg of the nanotube. The ratio between the estimated fun-
of the finite kinematics on the Lennard-Jones forces per umiamental frequency and the real one is found to be close to 1. We
length, i.e., van der Waals and Pauli forces, which become signifenclude that the form of Ed5) is good for our scope.
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The free-energyor total potential energyof the system can be only due to bending but also due to stretching. This represents the

written as predominant effect of the finite kinematics for the doubly clamped
_ nanotube.
W(C) - Eelas{c) - Eele(,(c) - EvdW(C) - EP(C)- (73) The strain due to bending is
Equilibrium and stability are obtained from
dW(c) dw
= =-y—, 14
c -0 (7b) =Y 2 (14
d®W(c) wherey has the origin in the centroid of the cross section, and is
dc? =u. (70) parallel to the direction of the loads. In addition, the mean value

o o of stretching due to the displacemewt noting that &?=dz?
The equilibrium condition is reached when the free-energygy2, is[14]

reaches a minimum valu&g. (7b)). On the other hand, the struc-

tural instability occurs at the so-called pull-in voltage, when the L
second order of the free-energy becomes zEm (7¢)). Accord- _Os-dz 1 dw Zd
ing to [10], the effects of the van der Walls and Pauli forces for 8~ 74 2L dz z.
these boundary conditions is negligible, even for small gaps; 0

hence, we tak‘EVd.W’P%O' . . As a consequence, the elastic energy stored in the nanotube, is
The electrostatic energy per unit length can be approximated as

(15

dEelec meQV? 3 meQV? E L
dz 2R+H-w)\  [2H+R) Eglast= —f f (8¢ + &p)2dAdz, (16)
nl——— | In|l———— 2), )0
R R
* 1 1( W )j : where A=7(R2,—RZ2,) is the cross-section area of the nanotube.
X[ 1+ = . (8 ideri i
E |n<2(H " R))% \H+R (8)  Considering Eq(5), the result is
R 512El 128 ¢?
Employing Eq. (6b), the total electrostatic energy can be ex- Betas= — 73C°\ 1+t 523 ) 17
5L 3003p
pressed as
megVAL where the radius of inertia is defined ad =Ap?. The first term
Eeled) = W corresponds to the bending, whereas the second nonlinear term
| (—) represents the elastic strain energy stored in the beam due to the
R stretching of the nanotube. Note that the fofderivative of the
% 1 % c i energy due to bending is linear, while the one due to stretching is
x| 1+ Ea”<_) ] cubic. _ _
=1 | 2H+R)) |' i H+R Considering the energy as the fundamental quantity to derive a
n R nonlinear correction for the stretching, we have to consider the
© increase in beam stiffness as
where{a;} are constants. Le3(c)=372, WEE%(@)J . 128 2
2R El— {1+ JE (18)
From Egs.(5) and (6a), the total elastic energy of the nanotube P
can be obtained as Therefore, the equilibrium condition gives
512El ,
Eelast= ?FC . (10)
From Eqgs.(7a) and(7b), the equilibrium condition provides g pE— T o
inumaricaly
H+R (2(H+R 1024| c — — gmal
V(e) = —— In< ( ))\/ : ( ) 1) 00 e
L R 5mepS () \H+R ——Firile kinemalics
numranical
The central displacement of the nanotube at puléip can be B0 s _imm;,,“
obtained from N {anahiical
H g
dv(c = &0
J =0, (12) g
dc 20 |
which means the pull-in corresponds to a maximunVirHence, 5
the pull-in voltage can be written as 20 § -
-
_(H+R (2(H+R)) JEI [ F— o N— - -
Ve =k L2 ln( R ) 8_0' 13 o B 10 18 20 25 a0 a8
Vaoltage (valt)

_ 1024 (_Cp_
wherek= 35w5f(cp.)(H+R . . . . o
\ Fig. 2 Comparison between analytical predictions and nu-
4 Finite Kinematics merical results_. Plot of'a_pplit_ed voIt_age versus gap for both
. . o . small deformation and finite kinematics. The gap is measured
To take into account the nonlinear effect arising from finit@etween the axis of the nanotube and the electrode in the

kinematics, we have to evaluate the energy stored in the beam matdle of the span.
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Table 1 Comparison between pull-in voltages evaluated numerically and analytically by Egs. (13) and (20) for doubly clamped
nanotube devices, respectively. E=1.0 TPa, R;,;=0. SD refers to small deformation, FK refers to finite kinematics.

Case H[nm] L[nm] R=Rg,{nm] Vp[V] (theo-SD Vp V] (num-SD Vp[V] (theo-FK) Vp[V] (num-FK)
1 100 4000 10 3.20 3.18 9.06 9.54
2 100 3000 10 5.69 5.66 16.14 16.95
3 100 2000 10 12.81 12.73 36.31 38.14
4 150 3000 10 9.45 9.43 38.93 40.92
5 200 3000 10 13.53 13.52 73.50 77.09
6 100 3000 20 19.21 18.74 3157 32.16
7 100 3000 30 38.57 37.72 51.96 50.63
128(c\?\ H+R [2(H+R) sumption of small deformations. Columns seven and eight in
V(e =V(e)/( 1 *30030) /T 2™ TR Table 1 compare analytical and numerical pull-in voltage predic-
p tions under the assumption of finite kinematics. The agreement
128/ ¢c\? c between the analytical predictions and numerical results is satis-
10241 1+ 3003\ 5 H+R factory (with a maximum discrepancy of 5% . .
p ) (19) Note that an oversimplified model, e.g., assuming a capacitance
5meeS (c) of two parallel plates and a concentrated stiffnig€s, can result

in significant errors in the evaluation of the pull-in voltage. The
importance of a more accurate model, that is the aim of this paper,
has been recently emphasized4n where, by assuming a parallel
plate capacitance, a pull-in voltage of 9.4 V was predicted in

Stationary condition, Eq(12), applied toV7X (FK refers to finite
kinematicg, provides the value af at pull in. The pull-in voltage
can then be expressed as

v kH+HR (2(H+R) El contrast to the experimental measurement of 8.5 V.
Vp, =K ?In A (20
: 0 6 Closure
Cy [of
wherek ™= f%(ﬁ)[l+%é f) ] We have presented a theory to analyze nanotube structures,
\ which is particularly suited to the design of NEMS and nanosen-

5 Comparison Between Analytical Prediction and Nu- sors. Comparison with numerical results shows good agreement.
merical Simulations The formulas here reported could represent a considerable step

forward in the understanding and development of nanosensors and
An assessment of the derived analytical formulas is perform®&EMS. Note that the analysis is also applicable to microelectro-

by comparing the results obtained solving numerically the correrechanical systemMEMS).

sponding elastic line equations, for both small deformatmmly With improvements in nanomanipulation and manufacturing of

bending and finite kinematic{bending+stretching The nano- nanodevices we hope experimental measurements will become

tube properties and dimensions used here are Young's modudysilable, which will confirm or identify limitations of the theo-

E=1.0 TPa,Rex=20 Nm,R;=0 nm, andL=3000 nm. The ini- retical predictions here reported.

tial gapH=100 nm is also employed. Note that the theory does

not involve a best fit parameter. The detailed comparison is rACknowledgments
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