
ices is
investi-
) of a
l differ-
al de-
evices.
w that
ior and
ull-in
ificant
f the
N. Pugno1

C. H. Ke

H. D. Espinosa2

e-mail: espinosa@northwestern.edu

Department of Mechanical Engineering,
Northwestern University,

Evanston, IL 60208-3111

Analysis of Doubly Clamped
Nanotube Devices in the Finite
Deformation Regime
In this paper, a nonlinear theory applicable to the design of nanotube based dev
presented. The role of finite kinematics for a doubly clamped nanotube device is
gated. In particular, we analyze the continuous deformation and instability (pull in
clamped-clamped nanotube suspended over an electrode from which a potentia
ential is imposed. The transformation of an applied voltage into a nanomechanic
formation indeed represents a key step toward the design of innovative nanod
Likewise, accurate prediction of pull-in/pull-out voltages is highly needed. We sho
an energy-based method can be conveniently used to predict the structural behav
instability corresponding to the ON/OFF states of the device at the so-called p
voltage. The analysis reveals that finite kinematics effects can result in a sign
increase of the pull-in voltage. This increase results from a ropelike behavior o
nanotube as a consequence of the stretching imposed by the actuation.
fDOI: 10.1115/1.1875452g
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1 Introduction
Nanoelectromechanical systemssNEMSd are attracting muc

interest in the scientific community, since the discovery of n
tubesf1g. The first really true carbon-nanotube-based NEMS
vice, fully integrating electronic control and mechanical respo
was developed only some months agof2g. The authors reporte
the construction and successful operation of a fully synth
nanoscale electromechanical actuator incorporating a ro
metal plate, with a multi-walled carbon nanotube serving as
key motion-enabling element. Rueckes et al.f3g investigated
carbon nanotube-based nonvolatile random access memory
veloping an innovative bistable nanoswitch based on electro
and van der Waals forces. The authors emphasized the ex
high integration level of the nanoswitches, approaching 1012 ele-
ments per square centimeter, and an element operation freq
in excess of 100 GHz. The viability of the concept was dem
strated by the experimental realization of a reversible bis
nanotube-based bit. Inf4g the development of nanotweezers w
reported. The mechanical capabilities of the nanotweezers
demonstrated by grapping and manipulating submicron clu
and nanowires.

In this context, the characterization of mechanical and
tronic properties of nanotubes has been the subject of inten
search. Their small size, low density, high stiffness, flexibility,
strength, as well as excellent electronic properties, sugges
nanotubes and nanowires are the most promising nanoscop
ments in the implementation of NEMS. For a recent review on
mechanics of carbon nanotubes the reader should refer to th
per by Qian et al.f5g, and references therein. The strength
carbon nanotubesf6g, was found to be of the order of 10–1
GPa. Furthermore, nanotubessas well as nanoropes—compos

1On leave from the Department of Structural Engineering, Politecnico di To
Torino, Italy.

2To whom correspondence should be addressed.
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PLIED MECHANICS. Manuscript received by the Applied Mechanics Divis
August 23, 2004; final revision, September 23, 2004. Editor: K. R. M. MeMee
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Engineering, University of California - Santa Barbara, Santa Barbara, CA 9
5070, and will be accepted until four months after final publication in the paper
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of several nanotubes—and nanowires—having differenltly sh
cross sectionsd possess an extremely high stiffnesssYoung’s
modulus of the order of 1 TPaf7,8gd and flexibility sstrain a
tensile failure of the order of 30%f9gd. As a consequence of th
large flexibility, the effect of the large displacements, usually
glected in analytical calculations, has to be considered in
analysis of NEMS.

In spite of the described fast acceleration in developing NE
structures, key formulas needed in their design are still abse
the literature. The first extensive investigation of the behavio
nanotube-based devices has been recently reportedf10g. In that
paper, the differential equation of the elastic line of a nano
suspended over an electrode and from which a differential in
tential is imposed, was numerically solved according to
tinuum mechanics, assuming small displacements. The c
sponding pull-in voltages, at the structural instability, w
evaluated for different case studies. In addition, the first attem
obtain an analytical formula for the pull-in voltage of the na
tube was also proposed, assuming for the nanotube aplatelike
undeformed shape, connected via a lamped stiffness to the g
electrode. As emphasized by the same authors, the propose
mula was not able to reproduce accuratetly all their nume
results.

In this paper we present a nonlinear energy-based theory f
prediction of the pull-in voltage of doubly clamped nanotu
under stretching. The equilibrium condition as well as the in
bility of the nanotube is obtained, respectively, by setting to
the first and the second derivatives of the free energy of the
tem. A comparison between analytically predicted pull-in volta
and those obtained by numerically solving the corresponding
erning equations is also provided.

2 Elastic Line Equation of the Nanotube Under Finite
Kinematics

In this section we derive, in the finite deformation regime,
elastic line equation for a nanotube. We focus the attention
doubly clamped nanotube suspended over an electrode at
tancer =H from which a differenceV in the electrostatic potenti
is imposedsnanoswitchd which is schematically shown in Fig.
Note that this is equivalent to the problem of two identical do
clamped nanotubes placed at distance 2r =2H under a differenc

,

.
ek-
al
6-
lf

in voltage 2V, as imposed by the symmetry.
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1. We
The electrostatic and van der Waals energies per unit lengt
be evaluated by the following relationshipsf10g:

dEelec

dz
=

p«0V
2

cosh−1S1 +
r

R
D ,

dEvdW

dz
= o

R=Rint

Rext

o
r=r int

r int+sNG−1dd
p2C6n

2d2Rsr + Rdf3R2 + 2sr + Rd2g
2fsr + Rd2 − R2g7/2 ,

s1d

wherez is the axial coordinate of the cantilever nanotube,Rint and
R;Rext are the inner and outer radius of a multiwalled nanot
NG is the number of layers in the substratesgraphened, d is the
interlayer distancesfor graphite d=0.335 nmd. In addition, r
; r int is the gap between the nanotubesexternal walld and the
surface layer of the substrate, wheren is the atomic density, th
for graphite is equal ton=1.1431029 m−3, and «0=8.85
310−12 C2 N−1 m−2 is the vacuum permittivity.

The corresponding forces per unit lengthqelec andqvdW can be
evaluated, according to Eq.s1d as

qelec= −
dsdEelec/dzd

dr
, qvdW = −

dsdEvdW/dzd
dr

. s2d

Based on continuum mechanics, the quasistatic structura
havior of the nanotube, can be obtained solving the elastic
equation, namely,

EI
d4w

dz4 = qvdW + qelec, I =
psRext

4 − Rint
4 d

4
, s3d

wherewszd=H−rszd is the nanotube deflection,H is the nomina
gap between nanotube and electrode, andE is the Young’s modu
lus of the nanotube, with moment of inertiaI.

It is important to underline that Eq.s3d assumes small displac
ments. On the other hand, due to the large flexibility of the n
tube, the role of the finite kinematicsslarge displacementsd could
become relevant. According to these considerations, we ha
consider the complete expression for the elastic curvature. I
dition, it is important to note that large deformations could im
for doubly clamped nanotubes, also the stretching of the ele
Finally, under large deformations, the electrostatic forces
thogonal to the surface of the nanotube, have to be consi
with respect to the deformed configurationswe neglect the effec
of the finite kinematics on the Lennard-Jones forces per

Fig. 1 Schematics of doubly clamped nanotube based
nanoswitches and nanotweezers
length, i.e., van der Waals and Pauli forces, which become signi
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cant only for very small gaps, i.e., few nanometersd. In the dy-
namic regime, the damping and inertia forces must be also a
se.g., to consider variable applied voltages, thermal vibrat
free vibrations, and so ond. According to these considerations,
complete expression of the elastic line equation for a nano
device is

EI
]2

]z21
]2w

]z2

F1 +S ]w

]z
D2G3/22 −

EA

2LE0

L S ]w

]z
D2

dz

]2w

]z2

F1 +S ]w

]z
D2G3/2

= qvdW + qP + Sqelec− g
]w

]t
− m

]2w

]t2
DF1 +S ]w

]z
D2G1/2

, s4d

wherem andg represent the mass and the damping per unit le
of the nanotube andt is the time. The Pauli force per unit leng
qP is obtained from the repulsive part of the Lennard-Jones p
tial f10g. From theQ-factor of the nanotubesbetween 170–50
f11gd, g=mv0/Q, wherev0 is its fundamental rotating frequen
The termf1+s]w/]zd2g3/2 represents the correction for the cur
ture, that must be considered under large displacements. Th
cosq=s1+s]w/]zd2d−1/2 has to be introduced to consider
changing in the positions of the loads that remain pependicu
the nanotube axis, as a consequence of the large displace
involving not necessarily small rotations of the cross-sectio
an angleq. For a clamped-clamped nanotube the axial forc
equal toNswd=EA/2Le0

Ls]w/]zd2dz.
Some interesting results were obtainedf10g by solving numeri

cally Eq. s3d. The more general Eq.s4d was also solved nume
cally f12,13g. On the other hand, here we prefer obtaining
analytical solution under simplified hypotheses for the pu
voltage, corresponding to the quasistatic collapse of the nano
i.e., assumingg=m=0. Instead of solving Eq.s4d in an approxi
mate way, we will obtain the equilibrium and the instability of
nanosystem by minimizing the free energy and its first deriva

3 Small Deformation
We consider a clamped-clamped nanotube of lengthL. For the

small deflection case of a clamped-clamped nanotube loade
constant force per unit length, we assume a functionwszd satisfy-
ing the boundary conditionswsz=0,Ld=w8sz=0,Ld=0, namely,

wszd < 16FS z

L
D2

− 2S z

L
D3

+ S z

L
D4Gc, s5d

wherewsz=L /2d=c is here an unknown constant that repres
the displacement of the central point.

As a consequence, the elastic energy, assuming small dis
ments, as well as the electrostatic and van der Waals en
stored in the nanotube can be obtained by integration as

Eelastscd =
EI

2 E
0

L Sd2w

dz2 D2

dz, s6ad

Eelecscd < E
0

L
dEelec,vdW,Phrfwszdgj

dz
dz. s6bd

We investigate the validity of the form of Eq.s5d by evaluating
the associated fundamental frequency and by comparing it
the well-known value for a clamped-clamped nanotube. Equ
the maximum values of the elastic strain energy of Eq.s6ad and of
the kinetic energyKstd=1/2e0

Lsdw/dtd2mdz, with m mass per un
length of the nanotube, during its free-vibration withwsz,td
<wszdsinv0t, one finds the estimation of the fundamental
quencyv0 of the nanotube. The ratio between the estimated
damental frequency and the real one is found to be close to

fi-conclude that the form of Eq.s5d is good for our scope.
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The free-energysor total potential energyd of the system can b
written as

Wscd = Eelastscd − Eelecscd − EvdWscd − EPscd. s7ad
Equilibrium and stability are obtained from

dWscd
dc

= 0, s7bd

d2Wscd
dc2 = 0. s7cd

The equilibrium condition is reached when the free-en
reaches a minimum valuesEq. s7bdd. On the other hand, the stru
tural instability occurs at the so-called pull-in voltage, when
second order of the free-energy becomes zerosEq. s7cdd. Accord-
ing to f10g, the effects of the van der Walls and Pauli forces
these boundary conditions is negligible, even for small g
hence, we takeEvdW,P<0.

The electrostatic energy per unit length can be approximat

dEelec

dz
<

p«0V
2

lnS2sR+ H − wd
R

D =
p«0V

2

lnS2sH + Rd
R

D
331 +o

i=1

`

1 1

lnS2sH + Rd
R

Doj=1

`
1

i
S w

sH + RdD
j2

i

4 . s8d

Employing Eq. s6bd, the total electrostatic energy can be
pressed as

Eelecscd =
p«0V

2L

lnS2sH + Rd
R

D
331 +o

i=1

`

1 1

FlnS2sH + Rd
R

DG i o
j=i

`

aijS c

sH + RdD
j24 ,

s9d

wherehaij j are constants. LetSscd=oi=1
` s 1

flns2sH+Rd
R dgi

o j=i
` aijs c

sH+Rd d jd.
From Eqs.s5d and s6ad, the total elastic energy of the nanotu
can be obtained as

Eelast=
512

5

EI

L3c2. s10d

From Eqs.s7ad and s7bd, the equilibrium condition provides

Vscd =
H + R

L2 lnS2sH + Rd
R

DÎ 1024EI

5p«0S8scdS c

H + R
D . s11d

The central displacement of the nanotube at pull-incPI can be
obtained from

dVscd
dc

= 0, s12d

which means the pull-in corresponds to a maximum inV. Hence
the pull-in voltage can be written as

VPI = k
H + R

L2 lnS2sH + Rd
R

DÎEI

«0
, s13d

wherek=Î 1024
5pS8scPId

s cPI

H+R
d.

4 Finite Kinematics
To take into account the nonlinear effect arising from fi
kinematics, we have to evaluate the energy stored in the beam

Journal of Applied Mechanics
y

e

r
s;

as

-

only due to bending but also due to stretching. This represen
predominant effect of the finite kinematics for the doubly clam
nanotube.

The strain due to bending is

«b = − y
d2w

dz2 , s14d

wherey has the origin in the centroid of the cross section, an
parallel to the direction of the loads. In addition, the mean v
of stretching due to the displacementw, noting that ds2=dz2

+dw2, is f14g

«s =
ds− dz

ds
<

1

2LE0

L Sdw

dz
D2

dz. s15d

As a consequence, the elastic energy stored in the nanotub

Eelast=
E

2E
A
E

0

L

s«s + «bd2dAdz, s16d

whereA=psRext
2 −Rint

2 d is the cross-section area of the nanotu
Considering Eq.s5d, the result is

Eelast=
512

5

EI

L3c2S1 +
128

3003

c2

r2D , s17d

where the radius of inertiar is defined asI =Ar2. The first term
corresponds to the bending, whereas the second nonlinea
represents the elastic strain energy stored in the beam due
stretching of the nanotube. Note that the forcesderivative of the
energyd due to bending is linear, while the one due to stretchin
cubic.

Considering the energy as the fundamental quantity to der
nonlinear correction for the stretching, we have to conside
increase in beam stiffness as

EI → S1 +
128

3003

c2

r2DEI. s18d

Therefore, the equilibrium condition gives

Fig. 2 Comparison between analytical predictions and nu-
merical results. Plot of applied voltage versus gap for both
small deformation and finite kinematics. The gap is measured
between the axis of the nanotube and the electrode in the

notmiddle of the span.
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VFKscd = VscdÎS1 +
128

3003
S c

r
D2D =

H + R

L2 lnS2sH + Rd
R

D

3
Î1024EIF1 +

128

3003
S c

r
D2GS c

H + R
D

5p«0S8scd
. s19d

Stationary condition, Eq.s12d, applied toVFK sFK refers to finite
kinematicsd, provides the value ofc at pull in. The pull-in voltage
can then be expressed as

VPI
FK = kFKH + R

L2 lnS2sH + Rd
R

DÎEI

«0
, s20d

wherekFK=Î 1024
5pS8scPId

s cPI

H+R
df1+ 128

3003
scPI

r
d2g.

5 Comparison Between Analytical Prediction and Nu
merical Simulations

An assessment of the derived analytical formulas is perfo
by comparing the results obtained solving numerically the c
sponding elastic line equations, for both small deformationsonly
bendingd and finite kinematicssbending+stretchingd. The nano
tube properties and dimensions used here are Young’s mo
E=1.0 TPa,Rext=20 nm,Rint=0 nm, andL=3000 nm. The ini
tial gap H=100 nm is also employed. Note that the theory d
not involve a best fit parameter. The detailed comparison i
ported in Fig. 2. In this figure, the applied voltage versus the
in the middle of the span between the nanotube and the elec
is theoretically evaluated and plotted for both the small defo
tion model Eq.s11d and the finite kinematics model Eq.s19d.
These plots are compared in the same figure with the small d
mation and finite kinematics numerical results obtained by so
Eq. s3d using a finite difference scheme. When evaluating
analytical solution,i =1 to 4 andj =1 to 10 are employed in th
series of Eq.s8d. The corresponding constantshaij j in Eq. s9d are
obtained using Mathematica®. From Fig. 2, it is clear that
finite kinematics effect is indistinguishable when the deforma
is small and it gradually becomes significant with the increas
deformation. It is noted that the theoretical prediction curve
be divided into two parts with the separation point atV=VPI and
c=cPI. The part that corresponds tocøcPI follows the numerica
results and can be experimentally implemented. The part tha
responds toc.cPI could be experimentally captured only by
displacement-control device. On the other hand, if the NEM
voltage controlled, it will follow the unstable pathsat V=VPId until
reaching the contact. The difference between the two pat
related to the kinetic energy released by the structure after p
when the device is actuated under voltage control. From Fig
can be concluded that the analytical results are in excellent a
ment with the numerical results.

The effects of the geometry of the nanotubeL and R and the
step heightH on the pull-in voltage of the NEMS device have a
been examined both analyticall and numerically. The result
reported in Table 1. Columns five and six in Table 1 com

Table 1 Comparison between pull-in voltages evaluated numerica
nanotube devices, respectively. E=1.0 TPa, Rint =0. SD refers to

Case Hfnmg Lfnmg R=Rextfnmg VPIfVg stheo-S

1 100 4000 10 3.20
2 100 3000 10 5.69
3 100 2000 10 12.81
4 150 3000 10 9.45
5 200 3000 10 13.53
6 100 3000 20 19.21
7 100 3000 30 38.57
analytical and numerical pull-in voltage predictions under the a
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sumption of small deformations. Columns seven and eig
Table 1 compare analytical and numerical pull-in voltage pre
tions under the assumption of finite kinematics. The agree
between the analytical predictions and numerical results is
factory swith a maximum discrepancy of 5%d.

Note that an oversimplified model, e.g., assuming a capaci
of two parallel plates and a concentrated stiffnessf10g, can resul
in significant errors in the evaluation of the pull-in voltage.
importance of a more accurate model, that is the aim of this p
has been recently emphasized inf4g where, by assuming a paral
plate capacitance, a pull-in voltage of 9.4 V was predicte
contrast to the experimental measurement of 8.5 V.

6 Closure
We have presented a theory to analyze nanotube struc

which is particularly suited to the design of NEMS and nano
sors. Comparison with numerical results shows good agree
The formulas here reported could represent a considerable
forward in the understanding and development of nanosenso
NEMS. Note that the analysis is also applicable to microele
mechanical systemssMEMSd.

With improvements in nanomanipulation and manufacturin
nanodevices we hope experimental measurements will be
available, which will confirm or identify limitations of the the
retical predictions here reported.
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