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Abstract

A model is presented for the dynamic ®nite element analysis of large-strain, high strain rate deformation behavior of

materials. A total Lagrangian formulation is used in the derivation of discrete equations of motion. Both an isochoric

®nite deformation plasticity model, including rate and temperature e�ects, for metals, and a multiple-plane microcrack-

ing model for ceramics are introduced. In addition, algorithms are presented for correcting ®nite element mesh distor-

tion through mesh rezoning, optimization, and re®nement. A surface-de®ned multibody contact algorithm designed to

handle large relative displacements between bodies, with addition for friction, is included. Extensions of the mechanical

contact to account for heat ¯uxes between sliding bodies and the treatment of body interfaces with cohesive strength are

presented within a uni®ed framework. Two test examples are examined, simulating a modi®ed Taylor rod impact ex-

periment, in which an aluminum anvil strikes a con®ned or uncon®ned ceramic rod. Axial and radial velocities are com-

puted at the free end of the ceramic and at 30 mm from the impact surface, respectively. Comparisons with experimental

traces reveal that the simulations produce the same overall features observed in the experimental data. Ó 1998 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

There is a class of applications in which materi-
al and geometric nonlinearities play a major role in
understanding the physics of the problems. This
group includes problems in high speed machining,
metal forming, and impact-induced damage in
ductile and brittle materials. What makes these
problems special is the fact that the deformations
involved are severe and also take place very quick-
ly, resulting in large strains and strain rates, high
temperatures and stresses, and unusual friction

conditions. In machining, for example, the sur-
faces of workpieces have been estimated to have
plastic strains as high as 500%, as seen in Koman-
duri (1993). Experimental observations of metal
cutting operations show that deformations occur
in concentrated regions, in which material is sub-
jected to shear deformation at very high strain
rates (103±105), Oxley (1989). A similar scenario
is observed in impact and ballistic penetration (Zu-
kas, 1990).

Experimental investigations show that material
properties, such as stress-strain properties, are
strongly a�ected by strain rate and temperature
during plastic deformation (Du�y, 1979; Clifton
and Klopp, 1985; Nicholas and Rajendran,
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1990). For the same strain, the corresponding
stress increases with strain rate due to viscous ef-
fects. In addition, heat generated by plastic pro-
cesses and friction increases the temperature of
the material, leading to thermal softening which
can result in material instabilities. Temperatures
in excess to 600°C have been observed in machin-
ing experiments performed on 1020 steel (Shih and
Yang, 1993). High temperatures resulting from
plastic deformation were also measured within
shear bands in maraging steel and Ti alloys, (Zhou
et al., 1996).

In the case of brittle materials, ceramics, glass-
es, and ceramic composites, several failure modes
have been proposed. The most widely accepted
failure mechanisms are: microcracking, void col-
lapse under compression, grain boundary shearing
(in ceramics containing a glassy phase), twining
and microplasticity. Many experimental con®gura-
tions have been used to identify and quantify
inelasticity in brittle materials. Shock wave exper-
iments were performed by Rosenberg et al. (1985)
and Longy and Cagnoux (1989), and Grady
(1995). Normal impact recovery and pressure-
shear experiments were performed by Espinosa
et al. (1992), Espinosa and Clifton (1991) and Sun-
daram and Clifton (1996). Rod on Rod impact ex-
periments (Simha et al., 1995; Wise and Grady,
1994; Espinosa and Brar, 1995) were also perform-
ed to identify damage initiation and evolution un-
der two-dimensional loading conditions.

In general, physical experiments do not always
provide direct information on material behavior
and failure. Therefore, numerical simulations are
useful in helping researchers to obtain insight into
the physics of deformation and fracture of ad-
vanced materials. However, from a computational
standpoint, the class of problems previously men-
tioned present several di�culties. Large relative
deformations occur very quickly in well de®ned
moving domains. Strain and temperature gradi-
ents can be extremely sharp requiring a high de-
gree of spatial and temporal resolution of the
®eld variables. Moreover, in the case of brittle ma-
terials, a transition from continuous damage to
discrete fragmentation occurs. All these features
constitute important challenges in the develop-
ment of new computational capabilities.

Most FEM calculations for solid mechanics use
a Lagrangian formulation (Belytschko, 1983; Ben-
son, 1992). This means that as the mesh becomes
deformed, errors may accumulate from highly dis-
torted elements. A greatly deformed element may
become unsuitable for further updates in the calcu-
lation, e.g., Yang et al. (1989), Batra and Kuo
(1992) and Ortiz and Quigley (1991). In addition,
as elements are distorted, the time step required
for explicit integration algorithms (which are only
conditionally stable) tends to dwindle such that
completing a dynamic calculation may become ex-
tremely expensive from a computational view
point (Espinosa et al., 1995). The initial mesh
may also become inappropriate as time progresses,
because high strain gradients may develop in areas
of the mesh with insu�cient resolution to accu-
rately model geometric and material nonlineari-
ties.

There are several methods for dealing with these
problems. Highly distorted meshes may be ®xed by
moving and optimizing node locations, as in Zien-
kiewicz and Taylor (1991b). Nodes may also be
moved closer to regions of interest using adaptive
meshing algorithms. Several contributions have
been made in this direction, e.g., Zhu et al.
(1991) and Batra and Hwang (1993). Alternatively,
a mesh may be replaced completely with a brand
new mesh in an operation called remeshing or re-
zoning. Additional nodes may be added in regions
of interest to produce more elements in an h-re®ne-
ment, thereby creating more resolution where large
temperature and displacement gradients are occur-
ring (Marusich and Ortiz, 1995). Another way of
dealing with mesh distortion is by using arbitrary
Lagrangian±Eulerian (ALE) methods, (Donea,
1983; Liu et al., 1988; Benson, 1992; Dvorkin
and Petocz, 1992). As featured in Stillman et al.
(1993), the ALE method is able to continuously re-
build the boundaries in an Eulerian fashion, as
part of the regular smoothing operation, resulting
in good accuracy and reducing CPU time with re-
spect to pure Lagrangian formulations.

The development of new and faster computers
with parallel capabilities, as well as the manufac-
turing of ultra fast speed cameras, detectors, and
oscilloscopes, open new frontiers for the investiga-
tion of the mechanics and material issues discussed
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above. As an example of how experiments and nu-
merical simulations are combined to examine ma-
terial inelasticity and failure, we here present a
®nite element model to simulate dynamic contact,
and geometric and material nonlinearities resulting
from high speed impact. The model includes a
temperature and strain-rate dependent material
model for large deformation plasticity, micro-
cracking for the case of brittle materials, and a
multi-body contact law with a variable-coe�cient
friction law and heat conduction. In addition, the
capability to rezone, re®ne, optimize, and update
the ®nite element mesh is included to allow the cal-
culation to continue in a timely fashion through
extremely severe deformations. This is accom-
plished without resorting to numerical erosion
schemes, as in other Lagrangian formulations,
e.g., EPIC (1996), that can lead to results di�cult
to interpret or that fail to reproduce the physics of
the problem. A good example of this type of prob-
lems, it is the so-called interface defeat phenome-
non, which was experimentally discovered by
Hauver et al. (1994) in their studies of ballistic pen-
etration of ceramic targets. In this problem, tung-
sten heavy alloys (WHA) penetrators are defeated
at a ceramic/metal interface through a mechanism
of lateral plastic ¯ow. Certainly, an erosion scheme
would fail to simulate the large inelastic deforma-
tion of the WHA penetrator and its defeat.

In this paper, the features of the developed
computational algorithms are illustrated by exam-
ining the high velocity impact of a T-shaped alumi-
num rod against uncon®ned and con®ned ceramic
rods, Wise and Grady (1994). Interferometrically
measured velocities are used to assess the quality
of the proposed models.

2. The stress and deformation model

2.1. Field equations

In our formulation, the ®eld equations describ-
ing the material response of a body use a total La-
grangian approach. Consider a solid with volume
B0 in the reference con®guration, and a deforma-
tion process characterized by the mapping
x�X; t�. Then a material point initially at X will

be located at x � X� u after deformation, in
which u is the displacement vector, as shown in
Fig. 1. A displacement based ®nite element formu-
lation is obtained from the weak form of the mo-
mentum balance or dynamic principle of virtual
work. At time t, the weak form is given byZ
B0

�r0T0 � q0�b0 ÿ a�� � g dB0 � 0; �1�

Z
B0

T0:r0g dB0 ÿ
Z
B0

q0�b0 ÿ a� � g dB0 ÿ
Z
S0r

t � g dS0

� 0; �2�
where T0 is the ®rst Piola±Kirchho� stress tensor
at time t; b0, a, and t are the body force vector, ac-
celeration vector, and boundary traction vector on
volume B0 and boundary S0r, respectively. Virtual
displacement ®eld g is assumed to be admissible,
and q0 represents the material density per unit vol-
ume in the reference con®guration. The symbol r0

denotes the material gradient with respect to the
reference con®guration, and `:' is used to denote
the inner product between second order tensors,
e.g., A: B � AijBji, where the summation conven-
tion on repeated indices is implied. Another form
of the weak form of the momentum balance, in
terms of spatial quantities, is given byZ
B0

s:rsg dB0 ÿ
Z
B0

q0�b0 ÿ a� � g dB0 ÿ
Z
S0r

t � g dS0

� 0 �3�
in which superscript s stands for the symmetric
part of the tensor, s � FT0 is the Kirchho� stress,

Fig. 1. Reference and current con®gurations.
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F is the deformation gradient at time t, and r is
the spatial deformation tensor. As Eq. (3) shows,
the equation of motion in its weak form states that
the work done by the stresses s over strains rsg
equals the work done by applied body forces, iner-
tia forces, and surface tractions.

2.2. Large deformation plasticity model

The plasticity constitutive law used here is
based on an atomic lattice model for metals to des-
cribe elastic and plastic material behavior. Consid-
er a crystal lattice being deformed from its initial
undeformed con®guration B0 to its current con®g-
uration Bt at time t. Locally, the deformation of
the crystal is fully de®ned by the deformation gra-
dient ®eld F. The total deformation F is the result
of two main mechanisms of deformation: disloca-
tion motion within the active slip systems of the
crystal and lattice distortion. Following Lee
(1969), this points to a multiplicative decomposi-
tion of the deformation gradient F into a plastic
part Fp, de®ned as the cumulative e�ect of disloca-
tion motion, and an elastic part Fe, which de-
scribes the distortion of the lattice. Namely,

F � FeFp: �4�
Following Teodosiu (1970), Rice (1971), Mandel
(1972), Hill and Rice (1972), Havner (1973) and
Asaro and Rice (1977), we shall assume that Fp

leaves the crystal not only essentially undistorted,
but also unrotated, as seen in Fig. 2. Thus, the ro-
tation of the lattice is contained in Fe. This choice
of kinematics uniquely determines the decomposi-
tion (4). The plastic part Fp of the deformation

gradient de®nes a collection of plastically deformed
local con®gurations referred to as the intermediate
con®guration Bt. Although this con®guration is
®ctitious, it can be interpreted as the con®guration
obtained from macroscopic unloading, from the
current con®guration, in the absence of further
motion of crystal defects, i.e., constant lattice
structure.

Insight into the structure of the constitutive re-
lations can be obtained from work conjugacy con-
siderations (Lubliner, 1990). By virtue of the
decomposition (4), the deformation power per unit
of undeformed volume takes the form

T0: _F � T
0
: _Fe � R: L

p �5�
or

S: _E � S: _Ee � R: L
p
; �6�

where T0 is the ®rst Piola±Kirchho� stress tensor,
S is the second Piola±Kirchho� stress, E is the La-
grangian strain, and

T
0 � T0FpT; �7�

S � FpSFpT; �8�

R � FeTT0FpT � C
e
S � FeT

sFeÿT; �9�

L
p � _FpFpÿ1: �10�

Here, T
0

de®nes a ®rst Piola±Kirchho� stress ten-
sor relative to the intermediate con®guration Bt, S

de®nes a second Piola±Kirchho� stress tensor rel-
ative to the intermediate con®guration Bt,
C

e � FeFeT is the elastic right Cauchy±Green de-
formation tensor in the intermediate con®guration
Bt, and R is a stress measure conjugate to the plas-
tic velocity gradients L

p
on Bt (Mandel, 1972).

The work conjugacy relations expressed in
Eqs. (5) and (6) suggest plastic ¯ow rules and elas-
tic stress-strain relations of the general form,

L
p � L

p�R;Q�; �11�

T
0 � T

0�Fe�: �12�
Here, Q denotes some suitable set of internal vari-
ables de®ned on the intermediate con®guration,
for which suitable equations of evolution, or hard-Fig. 2. Deformation gradient decomposition.
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ening laws, are to be supplied. It should be noted
that Eq. (11) determines uniquely both the plastic
deformation and the rate of plastic rotation. Be-
cause, by the choice of kinematics, Fp is invariant
with respect to rigid body motions superimposed
on the current con®guration, Eq. (11) is automat-
ically material frame indi�erent. By contrast, ob-
jectivity imposes non-trivial restrictions on the
form of Eq. (12). The most general form of
Eq. (12) consistent with the principle of material
frame indi�erence is

T
0 � FeS�Ce�: �13�

Several choices are available in the formulation
of the above elasticity constitutive law. One law
suitable for metals and polymers, up to moderately
large elastic strains, was proposed by Weber and
Anand (1990),

S � L�0:5 ln C
e� � LH

e
; �14�

where H
e

is a logarithmic strain measure or Henky
strain and L the material sti�ness fourth order ten-
sor. For an elastic isotropic solid L is given by

L � 2lI� �k ÿ 2
3
l�1
 1; �15�

in which l is the shear modulus, k the bulk modu-
lus, I the identity fourth order tensor, and 1 the
unity vector.

It should be pointed out that, in general, the
choice of stress and strain measures in the formu-
lation of constitutive laws is not unique and, in a
sense, arbitrary. The only requirement is that in
the computation of work, conjugate variables are
used, as discussed previously. Moreover, for the
logarithmic (Henky) strain, the work conjugate
stress is the back rotated Cauchy stress tensor,
s � JReTrRe, see Atluri (1984) and Bathe (1996).
In the last equation, Re is the rotation tensor ob-
tained from a polar decomposition of Fe and
J � det F is the jacobian.

In summary, the elastic and plastic portions of
the deformation are separated by the multiplica-
tive decomposition F � FeFp as outlined above,
subjected to the restrictions det Fe > 0 and
det Fp � 1. Moreover, from Eq. (10) it can be
seen that the evolution equation for Fp follows
the ¯ow rule

_Fp � L
p
Fp; �16�

L
p �Wp �Dp; �17�

wherein L
p

is the plastic part of the velocity gradi-
ent L. Assuming that Wp � skw L

p � 0 and that
Dp � sym L

p � Dp�S;Q� � _epN, the evolution
law becomes, _FpFpÿ1 � _epN. A nonzero plastic spin
tensor has been proposed by several investigators.
Numerical simulations show that nonzero plastic
spins can lead to a more accurate representation
of large plastic deformation in shear bands and
other material instabilities. However, mesh adap-
tivity was not used in these studies. In the above
expression of Dp, N is the plastic ¯ow direction
and _ep is the e�ective plastic strain rate. Within a
J2-¯ow formulation, the plastic ¯ow direction is
given as a function of the deviatoric part of the
second Piola±Kirchho� stress tensor, Sdev, and
the e�ective stress de®ned by

N � 3

2

Sdev

r
; �18�

r �
��������������������
3
2
Sdev: Sdev

q
: �19�

The e�ective plastic strain rate, _ep, is a function of
the e�ective stress r, temperature T , and the inter-
nal variables Q, viz.,

_ep � f �r;Q; T �: �20�
For a viscoplastic model, a common representa-

tion of this function is,

_ep � _ep
0

r
s�ep; T �

� �a

ÿ 1

� �
; r > s; �21�

_ep � 0; r6 s; �22�

s�ep; T � � r0 1� ep

ep
0

� �1=b

1ÿ T ÿ T0

Tm ÿ T0

� �c� �
; �23�

such that ep is the accumulated plastic strain, r0

the initial material strength, Tm the melting tem-
perature of the material, T0 the reference tempera-
ture, and a, b, and c are the rate sensitivity,
hardening, and thermal softening exponents. The
material strength s and �p are internal variables
contained in Q. In this model the equations of evo-
lution of the internal variables are de®ned by a
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tensor value function H�S;Q�, describing harden-
ing/softening laws. A summary of the constitutive
model and its discrete counterpart is given in Ta-
ble 1. It should be noted that the exponential law
discussed in the work by Weber and Anand
(1990), is used to update the plastic part of the de-
formation gradient, F

p
n�1.

2.3. Multiple-plane microcracking model

In this section, the inelastic response of ceram-
ics is modeled through a microcracking multiple-
plane model based on a dilute approximation
(Taylor model). The formulation overlaps with
some theories in which multiple-plane representa-
tions of inelasticity are derived, e.g., Seaman and
Dein (1983), Bazant and Gambarova (1984) and
Ju and Lee (1991).

The basic assumption in the microcracking mul-
tiple-plane model is that microcracking and/or slip
can occur on a discrete number of orientations (see
Fig. 3). Slip plane properties (friction, initial size,
density, etc.) and their evolution are independently
computed on each plane. The macroscopic re-
sponse of the material is based on an additive de-
composition of the strain tensor into an elastic

part and an inelastic contribution arising from
the presence of microcracks within the solid. In
contrast to scalar representations of damage, e.g.,
Rajendran (1992), the formulation by Espinosa
(1995) is broad enough to allow the examination
of damage induced anisotropy and damage localiza-
tion in the interpretation of impact experiments.

For a representative volume B of an elastic solid
containing penny-shaped microcracks with a den-
sity N �k�, the average inelastic strains are given by

�c
ij �

X9

k�1

N �k�A�k�
1

2
�b�k�i n�k�j � n�k�i b

�k�
j �; �24�

where the subindex k is used to label the orienta-
tions, A�k� denotes the surface of a microcrack on
orientation k, n�k� the corresponding unit normal,
and b

�k�
the average displacement jump vector

across A�k�.
If the resolved normal traction acting on the

microcracks on orientation k is tensile, the average
displacement jump vector resulting from an ap-
plied Cauchy stress ®eld r is given by

b
�k�
i �

1

A�k�

Z
A�k�

b�k�i dA � 16�1ÿ m2�
3E�2ÿ m� a�k��2rijn

�k�
j

ÿ mrjln
�k�
j n�k�l n�k�i �; �25�

in which E and m are the Young's modulus and
Poisson's ratio of the uncracked solid, and ak is
the radius of the penny-shaped microcracks on ori-
entation k. By contrast, if the normal traction is
compressive, the microcracks are closed and the
average displacement jump is given by

b
k
i �

32�1ÿ m2�
3pE�2ÿ m� a

kf k
i ; �26�

where fk is the e�ective shear traction vector on
orientation k given by

f k
i � �sk � lrk

n��ns�ki : �27�
In Eq. (27), l is the friction coe�cient of the mic-
rocrack faces, sk and rk

n are the resolved shear
stress and the normal stress acting on microcracks
with orientation k, respectively, and nk

s is the unit
vector in the direction of the resolved shear trac-
tion. Embodied in 26 is the notion that f k provides
the e�ective driving force for the sliding of the
microcracks.

Table 1

Numerical integration algorithm

Constitutive () Incremental

F � FeFp () Fn�1 � Fe
n�1Fp

n�1
_FpFpÿ1 � _epN�S;Q� () Fp

n�1 � exp�DepNn�1�Fp
n

S � L�1
2

ln Ce� () Sn�1 � L�1
2

ln Ce
n�1�

_Q � _epH�S;Q� () Qn�1 � Qn � DepHn�1

Fig. 3. Schematic of microcracking multiple-plane model.
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In order to compute the inelastic strain tensor
at all times, it becomes necessary to follow the evo-
lution of the microcrack radius ak in the selected
orientations. Following Freund (1990), an equa-
tion of evolution for a in the case of mixed mode
loading can be derived (Espinosa, 1995), viz.,

_ak � m�cR�1ÿ �KIC=Kk
eff�n

� �P 0; �28�
in which n� and m� are phenomenological materi-
al constants which may have di�erent values in
tension and compression, cR is the Rayleigh wave
speed, KIC is the material toughness, and Kk

eff is
an e�ective stress intensity factor. For mixed mode
conditions, Kk

eff is derived by considering an aver-
age energy release rate associated with an increase
in radius of the microcracks, namely,

Gk � 1

2p

Z2p

0

1ÿ m2

E
K2

I � K2
II � K2

III=�1ÿ m�� �
dh �29�

from which the following expression for Kk
eff is ob-

tained,

Kk
eff �

�������������
GkE

1ÿ m2

s
: �30�

The general structure of these constitutive equa-
tions corresponds to that of a solid with a damage-
induced anisotropic stress-strain relation with
elastic degradation. In particular, the e�ective be-
havior of the solid is predicted to be rate depen-
dent due to crack kinetics e�ects. From a
computational standpoint, this insures numerical
reliability and mesh independence, according to
Needleman (1988), and Espinosa (1989). This is
in contrast to quasi-static formulations of damage
for which the governing equations become ill-
posed in the softening regime, as in Sandler and
Wright (1984). Details about the stress update al-
gorithm, assuming an additive decomposition of
strain rates into an elastic and cracking part, can
be found in Espinosa (1995).

It should be pointed that this inelastic model
is a continuum model in which material damage
results from microcracking. If the material is sub-
jected to a predominantly tensile stress state, mic-
rocracks along orientations perpendicular to the
direction of maximum tensile stresses will grow

according to Eq. (5). In this case, signi®cant dila-
tion is expected due to mode I crack opening. If
a predominantly compressive state of stress with
shear is imposed, then crack opening is inhibited
but inelasticity is manifested by the growth of pen-
ny-shaped cracks in modes II and III (shear
modes).

2.4. Finite element discretization

Discretization of Eq. (3) de®nes a system of
nonlinear ordinary di�erential equations which
can be solved for the updated deformation xn�1.
A displacement-based ®nite element formulation
is obtained by expressing ®eld variables at any
point in an element as a function of nodal quanti-
ties and the element shape functions in the refer-
ence con®guration:

uia �
XNEN

a�1

Na�n�ua
i ; �31�

via �
XNEN

a�1

Na�n�va
i ; �32�

aia �
XNEN

a�1

Na�n�aa
i ; �33�

wherein uia, via, and aia are the displacement, veloc-
ity, and acceleration at the point of interest. The
sum is taken over the number of nodes in the ele-
ment, NEN, while Na�n� are the shape functions
relating nodal quantities ua

i , va
i , and aa

i to the point
of interest. The vector n contains the natural coor-
dinates of the point of interest in the isoparametric
master element. Substitution of the discretized
variables into Eq. (3) leads to the following system
of ordinary di�erential equations,

Miajbajb � f ext
ia ÿ f int

ia �34�

f int
ia �

X
e

Z
Be

0

na;jsij dB0 �
X

e

Z
Be

0

BTs dB0 �35�

f ext
ia �

X
e

Z
Be

0

q0b0iNe
a dB0 �

Z
@Se

0

tiNa dS0 �36�
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Miajb �
X

e

Z
Be

0

dijq0N e
b Ne

a dB0; �37�

in which f int
ia , f ext

ia , and Miajb are the internal nodal
forces, the external nodal forces, and the lumped
mass matrix, respectively. In order to obtain a uni-
form mass distribution in the mesh, the element
mass was lumped proportional to the angles de-
®ned in Fig. 4. For a typical node a we have

Miaia �
XNEL

i�1

X
k

q0al
kh

l
k=p: �38�

Areas ak and angles hk are de®ned in Fig. 4. Sub-
script k runs from 1 to 3 for midside nodes and
is 1 for corner nodes. In the above equation,
NEL is the number of elements sharing node a.

The integrations of the body forces, inertia forc-
es, and stress contributions take place over an ele-
ment volume Be

0, while the applied tractions are
integrated over the element surface @Se

0. Dynamic
equilibrium requires that internal and external
forces are balanced by the inertia forces. The shape
function derivatives na;j are de®ned in the current
con®gurations. The body forces and surface trac-
tions are applied upon the volume B0, and surface
@Se

0. In the expression for f int
ia , the Kircho� stress

can be expressed in terms of the second Piola±
Kirchho� stress tensor S in the intermediate con-
®guration, and the elastic part of the deformation
gradient, Fe, namely,

s � FeSFeT: �39�

2.5. Direct time integration algorithm

An explicit central-di�erence integration algo-
rithm is being used to integrate the system of ordi-
nary di�erential equations in time. The algorithm,
accounting for acceleration corrections due to con-
tact, is summarized in Table 2. As in any initial
boundary value problem, initial displacements
and velocities u0 and v0 are required. Initial accel-
erations a0 are calculated from initial applied forc-
es fext

0 , and initial internal forces f int
0 .

At each time step n, the nodal accelerations
must ®rst be corrected for any time-dependent
changes in the traction boundary conditions. Then
a displacement predictor at time n� 1, is com-
puted using the corrected acceleration and the dis-
placements and velocities at time step n. Modi®ed
accelerations at time n are computed based on the
corrected acceleration and changes in accelerations
resulting from surface contact determined from the
displacement predictor at n� 1. Updated displace-
ments at n� 1 are used in the update of stresses
and the computation of internal forces. Lastly, ac-
celerations and velocities at time n� 1 are ob-
tained completing the time integration scheme.

This explicit integration method is very useful
for studies in which high rates of loading are ex-
pected. The time steps used by these explicit calcu-

Fig. 4. Typical element partition for lumped mass calculation.
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lations are limited by stability, so care must be ta-
ken in ®nite deformation dynamic calculations to
ensure that waves do not propagate through the
mesh faster than the material wave speeds. To this
end, the time step is calculated dynamically from
the maximum element frequency in the mesh
xmax, such that Dt6 2=xmax. Flanagan and Be-
lytschko (1984) derived the following estimate of
xmax for an N -noded isoparametric element,

x2
max6N

k̂� 2l̂
q

 !
BiIBiI

A2
; �40�

in which BiI BiI is the trace of �B��B�T, and the area
A0 is found as CIJ XIYJ , where

CIJ �
Z Z

A

@NI

@n
@NJ

@g
ÿ @NI

@g
@NJ

@n

� �
dg dn; �41�

and NI are the element shape functions. For the
case of a 6-noded isoparametric triangular ele-
ment, CIJ is computed to be the 6 ´ 6 matrix

CIJ � 1

6

0 3 7 10 ÿ10 ÿ10

ÿ3 0 ÿ7 ÿ10 10 10

ÿ7 7 0 0 ÿ8 8

ÿ10 10 0 0 ÿ8 8

10 ÿ10 8 8 0 ÿ16

10 ÿ10 ÿ8 ÿ8 16 0

0BBBBBBBB@

1CCCCCCCCA
:

�42�

3. Mechanical contact

Contact algorithms allow the study of complex
interactions between bodies as occurs in many
practical applications such as impact and surface
machining. An algorithm, particularly suitable to
explicit time integrators was developed by Taylor
and Flanagan (1987). The 2-D version of the al-
gorithm is here discussed. Extensions to account
for heat ¯ux between contact surfaces and the
treatment of cohesive interfaces are presented in
subsequent sections. The algorithm consists in pre-
dicting accelerations assuming no contact and later
on correcting the accelerations of the surface nodes
so that the surfaces do not interpenetrate. In addi-
tion, a velocity-dependent friction model is includ-
ed. This surface-based contact algorithm allows
contact between bodies that undergo large relative
displacements as they move. It also allows the easy
incorporation of a velocity-dependent friction
model where the friction coe�cient is made a func-
tion of pressure and temperature. In this section we
start with a description of the contact algorithm as
presented in Taylor and Flanagan (1987), followed
by an extension to model cohesive interfaces.

3.1. Surface de®nition

The contact algorithm must keep track of the
relative positions of the two surfaces. This requires

Table 2

Explicit integration algorithm

1. Initial conditions:

n � 0

u0 � u0

v0 � v0

a0 �Mÿ1�fext
0 ÿ f int

0 �:
2. Correct accelerations due to changes in boundary conditions:

ân �Mÿ1�fext
n�1 ÿ fext

n �:
3. Compute displacement predictor:

ûn�1 � un � Dtvn � 1
2
Dt2ân:

4. Modify accelerations due to surface contact based on ûn�1:

an � ân � Dan

5. Update displacements:

un�1 � un � Dtvn � 1
2
Dt2an:

6. Update second Piola±Kirchho� stress tensor S at each

element (see Table 1).

7. Compute internal force vector:

f int
n�1 �

Z
B0

BTsn�1 dB0; sn�1 � Fe
n�1Sn�1FeT

n�1:

8. Solve for accelerations:

an�1 �Mÿ1�fext
n�1 ÿ f int

n�1�:
9. Update velocity vector:

vn�1 � vn � Dt
2
�an � an�1�:

10. n � n� 1, if n < nmax go to step 2, else stop.
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the storage of an array listing the surface nodes for
each body. In our FEM code, which is a modi®ed
version of the Finite Element Analysis Program,
FEAP, Zienkiewicz and Taylor (1991a), the mesh
is generated in blocks, and a subroutine is called
to generate the needed arrays of surface nodes.
To begin with, a surface de®nition routine identi-
®es all element corner nodes on the surface of
the block. This is currently done in a loop over
all of the elements, wherein each corner node accu-
mulates the di�erence between the node numbers
of the other two corner nodes. The end result of
this is that all interior corner nodes accumulate a
sum of zero, while the boundary corner nodes have
a nonzero sum. Then, starting with the ®rst boun-
dary corner node, the algorithm examines the ele-
ments attached to the node to ®nd the next corner
node on the boundary, in a counter-clockwise di-
rection. This is easily enough done as the element
connectivities are also de®ned in a counter-clock-
wise direction. As each new boundary corner node
is added to the surface array, the midnode between
it and the previous node is also added. The algo-
rithm repeats the process until it returns to the
starting point.

3.2. Surface tracking

With every time step, the contact algorithm ®rst
must predict the accelerations, velocities, and dis-
placements for the next time step. Our version of
FEAP obtains these data (â, v̂, û,) from the explicit
integration routine that precedes it. The resulting
displacements are then used to determine whether
or not contact has taken place.

During each time step, one of the surfaces is
designated as master surface, and the other as slave
surface. The algorithm assumes that slave nodes
can be penetrating the faces between the master
nodes. Therefore, an array is updated every time
step by moving from a previous closest master
node to a closer adjacent master node. Then the
process is repeated until no adjacent node is closer.
This method allows gradual relative motion be-
tween the two surfaces, while reducing the chances
of sudden jumps across the material near sharp
corners.

3.3. Determining contact

Once the appropriate master node is chosen, the
position of the slave node is compared to the faces
on either side of the master node. For a 2-D imple-
mentation, these two faces are the lines connecting
the closest master point and the master nodes pre-
ceding and following it, respectively. The slave
node is projected onto each of these lines to deter-
mine whether or not it falls within the in¯uence of
either or both of the two faces.

First of all, the angle between the master faces is
bisected, and the location of the slave node with
respect to the bisector is used to determine which
master face is near, and which is far. The near face
is the one which lies on the same side of the bisec-
tor as the slave node. Several tests are now made
to determine if contact has occurred, as detailed
in Figs. 5 and 6. They hinge upon several de®ni-
tions. The slave node is considered to be penetrat-
ing a face if the dot product between the projection
vector from the slave node to the surface and the
master surface normal is positive. The slave node
is considered to be along a face if the above projec-
tion vector intersects the line de®ned by the face on
the same side of the angle bisector as the face itself.
The opposing slave segment is the face on the slave
surface (adjacent to the slave node) that has the
most negative dot product of its normal with re-
spect to the master face normals. Finally, the op-
posing slave segment is more opposed to the
master face that supplies the most negative dot
product of the normals.

3.4. Acceleration corrections

To ensure that the two surfaces do not interpen-
etrate, any penetrating slave node and its associat-
ed masters must have accelerations applied to
them to negate the predicted penetration. First,
the penetration force of the slave node is calculat-
ed by

fp � ÿ bmsd
Dt2

n �43�
in which ms is the mass of the slave node, d the pen-
etration distance, Dt the time step, and n the mas-
ter surface normal vector. Parameter 0 < b < 1
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represents the fraction of a time step that a surface
spends as a slave or master surface. For best re-
sults, similar materials should spend approximate-
ly equal amounts of time as slave and master
surfaces, as master surfaces behave more sti�y
than the slave surface.

Next, this force is balanced to the master nodes
using the variable n, distance from the ®rst node of
the contact face to the projection point, non-di-
mensionalized by the length of the face. Once this

is complete, the contributions are summed and vir-
tual work is used to generate the acceleration cor-
rection for the master nodes:

ms1 � �1ÿ n�ms; �44�
ms2 � nms; �45�
fs1 � �1ÿ n�fp; �46�

fs2 � nfp; �47�

Fig. 6. Contact determination algorithm.

Fig. 5. Two surfaces are tested for contact.
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m�
X

s

msI

 !
anI �

X
s

fsI : �48�

In the above equation, the summation is over the
contributions from the slave nodes contacting
master node I . The correction for the slave node
is then calculated using the master node responses,
and is in turn used to get the ®nal normal acceler-
ations in the absence of friction for the slave and
master nodes.

ans � �1ÿ n�an1 � nan2; �49�

aslv � â� ans ÿ fp

ms
; �50�

amstr � â� anI : �51�

3.5. Friction

Friction forces are handled by a velocity-depen-
dent model, in which they resist the relative in-
plane motion of the contacting surfaces. The
relative velocity between the slave node and the
corresponding master surface is calculated by

v̂r � v̂s ÿ �1ÿ n�v̂1 ÿ nv̂2 �52�
wherein v̂s, v̂1, and v̂2 are the predicted velocities
for the slave node and the two master nodes, re-
spectively. From this, the relative tangential veloc-
ity, vs, its magnitude vs, and the tangential unit
vector s can be found by

v̂s � v̂r ÿ �n � v̂r�n; �53�

vs �
�����������
v̂s � v̂s

p
; �54�

s � v̂s

vs
: �55�

Similarly to the treatment of penetration, a tan-
gential contact force de®ned as a fraction of the
force that must be applied to the slave node to can-
cel its relative motion is given by

fs � ÿ bmsvs

Dt
: �56�

A key aspect in the treatment of contact is the def-
inition of a friction coe�cient. In general, the fric-

tion coe�cient is a function of pressure, sliding
velocity, and interface temperature. In what fol-
lows, we introduce a friction coe�cient that is a
function of the sliding velocity vs, namely,

l � l1 � �l0 ÿ l1�eÿcvs �57�
in which l0 and l1 are the low and high-velocity
friction coe�cients, and c is a decay constant. Ad-
ditional acceleration corrections are then calculat-
ed by

as � ÿmin l�ans ÿ fp

ms
� � n; bvs

Dt

� �
; �58�

aslv � aslv � ass; �59�

amstr1
� amstr1

ÿ �1ÿ n� asms

m1

s; �60�

amstr2
� amstr2

ÿ n
asms

m2

s: �61�

3.6. A dynamic interface/contact model

Recently, Espinosa and Lu (1995), proposed an
extension of the above contact algorithm to model
the dynamic behavior of interfaces. The motiva-
tion for this extension is to develop computational
tools that can address problems such as dynamic
delamination in composite materials, discrete frag-
mentation of brittle materials, and analysis of ma-
terial microstructures where dynamic inter-
granular and intragranular fracture occurs.

The model is based on the interface model pro-
posed by Tvergaard (1990), for quasi-static calcu-
lations and assumes that the interface carries
forces that oppose separation and shear between
two surfaces until debonding. The magnitude of
these forces are a function of the relative separa-
tion and shear displacement between the two sur-
faces. The normal and tangential displacement
jumps un and ut, respectively, are used to determine
a nondimensional parameter k, de®ned as

k �
�����������������������������������

un

dn

� �2

� ut

dt

� �2
s

; �62�

where dn and dt are the relative displacement com-
ponents at which interface separation or debond-
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ing takes place. Then, the interface traction vector
may be calculated by

Tn � un

dn
F �k�; Tt � a

ut

dt
F �k�; �63�

F �k� � 27

4
rmax�1ÿ 2k� k2�; for 06 k6 1;

�64�
where rmax is the maximum strength of the inter-
face and a a constant used to model the shearing
traction more accurately. Note that total debond-
ing occurs when k � 1.

This interface model is included as part of an
overall surface contact algorithm through the use
of interface elements having nodal equivalent forc-
es given by the above de®ned tractions. Two pos-
sibilities need to be considered in the calculation
of nodal equivalent forces. The ®rst is the case of
separation, un P 0, where the two surfaces are pull-
ing away from each other. In this case, the inter-
face law described above is used to apply the
appropriate equivalent nodal forces obtained by
integration of the traction vector. If interface fail-
ure is detected, k � 1, the surfaces can separate
freely. The second case is that of penetration,
un6 0. In this case, the contact algorithm provides
the equivalent normal nodal forces, while the inter-
face law provides the equivalent nodal tangential
forces. Upon interface failure, equivalent nodal
tangential forces are computed from the friction
law de®ned previously.

4. Thermal e�ects

As stated in the introduction, large plastic
strains and strain rates result in temperature in-
creases in the body. Hence a temperature-depen-
dent material model and heat conduction need
to be added to account for the fact that the behav-
ior of most materials can change dramatically as
the temperature rises. The rise in temperature is
usually caused by the generation of heat through
plastic deformation but can also be the result of
friction between sliding interfaces. In this section,
a discretized heat equation and its temporal in-
tegration is discussed. Moreover, an algorithm

accounting for thermal conductance between
bodies in contact, consistent with the previously
presented treatment of mechanical contact, is in-
troduced.

4.1. Governing equations for thermal e�ects

In a temperature dependent model, an extra lev-
el of complexity is added to the governing equa-
tions. Heat production and transfer is controlled
by the following partial di�erential equation:

in volume Bt, where heat is generated and trans-
ferred. In the above equation, Q is the heat source,
q the mass density, c the speci®c heat, and k the
thermal conductivity.

Boundary conditions consist of surface pre-
scribed heat ¯ux qB on surface Sq, prescribed heat
convection h�Tf ÿ T � on surface Sc, and a pre-
scribed temperature on surface ST . These condi-
tions are given for each surface as

T � TB on ST ; �66�

q � qB � k�T;xnx � T;yny� on Sq; �67�

q � h�Tf ÿ T � � k�T;xnx � T;yny� on Sc; �68�

where S � ST [ Sc [ Sq, h is the heat transfer coef-
®cient, Tf the temperature at in®nity, T the tem-
perature on Sc, and n � �nx; ny� the surface
normal vector. A weak form of Eqs. (66)±(68) is
given byZ
Bt

�kr2T � Qÿ cq _T �g dBÿ
Z
Sq

�k$T � n

ÿ qB�g dS ÿ
Z
Sc

�k$T � nÿ h�Tf ÿ T ��g dS � 0;

�69�
where g is a test function satisfying the boundary
condition g � 0 on ST . It can be shown that an
equivalent expression of the weak form is
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Z
Bt

k�$T � $g� dB�
Z
Sc

hTg dS �
Z
Bt

cq _Tg dB

�
Z
Sq

qBg dS �
Z
Bt

Qg dB�
Z
Sc

hTf g dS: �70�

This equation expresses an energy balance wherein
the change in heat energy in volume Bt is equal to
the net heat added.

For a ®nite element approach, a Galerkin meth-
od provides the discretization

T�x� � N�x�Te; �71�

g�x� � N�x�ge; �72�

T@ � BTe; �73�
in which g�x� is a weight function approximated
using the same shape functions N as used for T.
Note that these shape functions are de®ned in
the deformed con®guration. The quantity Te is
the array of nodal temperatures for an element,
while T¶ is the matrix containing the partial deriv-
atives of Te across the element.

Given the above spatial discretization, the gov-
erning equations simplify to a ®rst order set of or-
dinary di�erential equations, viz.,

�K�H�T� C _T � Rq � RQ � Rh; �74�
wherein the global characteristic conduction, con-
vection, and rate dependent matrices K, H, C de-
termine the response of the system. They may be
compiled from the element matrices by

K �
X

e

ke �
X

e

Z
Ae

BTkB dA; �75�

H �
X

e

he �
X

e

Z
Sc

NThN dS; �76�

C �
X

e

ce �
X

e

Z
Ae

NTqcN dA: �77�

The thermal load vectors are given by

Rq �
X

e

Z
SB

NTqB dS; �78�

Rh �
X

e

Z
Sc

NTTf h dS; �79�

RQ �
X

e

Z
Ae

NTQ dA; �80�

where Rq, Rh, and RQ are the thermal load vectors.
If thermal conductivity is assumed to be a crys-

tal property, then the large displacements and ro-
tations introduced by the elastic part of the
deformation gradient needs to be accounted for.
Following Lubliner (1990), we de®ne k � kFeFeT

in Eq. (75). Furthermore, for the plastic process
de®ned earlier, a heat supply Q due to the rate of
plastic work, _W p, can be estimated by the Tay-
lor±Quinny formula, viz.,

Q � d _W p; �81�
in which d is a coe�cient of the order of 0.8±0.9.

The whole system of equations may be simpli-
®ed by joining �K�H� � K̂, so that

K̂T� C _T � R: �82�
Now, using a direct integration method, the tem-
perature ®eld is computed at each time step as

1

Dt
C� bK̂

� �
Tn�1 � 1

Dt
Cÿ �1ÿ b�K̂

� �
Tn

� �1ÿ b�Rn � bRn�1 �83�
so that, if b � 0, the process becomes an explicit
integration algorithm, namely,

CTn�1 � �Cÿ DtK̂�Tn � Rn: �84�
This assumes, of course, initial conditions T � T0

at t � 0, as well as a time step below Dtcr �
2=�1ÿ 2b�kmax, where kmax is the maximum eigen-
value associate to the ®rst order system of ordinary
di�erential equations. In addition, if C is lumped
the algorithm does not require factorization of C

in the determination of Tn�1.

4.2. Thermal contact conductance

In many problemas involving interfacial sliding,
a formulation accounting for heat ¯uxes between
solid bodies is needed. In this section we derive
such a scheme consistently with the treatment of
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mechanical contact, i.e., we de®ne master and
slave surfaces each having a di�erent temperature.
If the mechanical contact determines penetration,
we de®ne a heat ¯ux between the surfaces due to
a temperature jump and heat generated at the fric-
tional contact resulting from a jump in velocities
across the sliding surface. This heat ¯ux is given by

qp � b�hs�Ts ÿ Tm� ÿ t � �vs ÿ vm��; �85�
in which t is the contact traction vector, vs and vm

are the slave and master nodal velocity vectors, Ts

is the temperature of the slave node and Tm is the
temperature of the master surface at the projection
point, viz.,

Tm � nT2 � �1ÿ n�T1; �86�
where T1 and T2 are the temperatures of the prece-
dent and antecedent nodes, respectively, on the
master segment. The contact heat transfer coe�-
cient hs, introduced in Eq. (85), is a function of
surface roughness Lg, contact area fraction fc, ma-
terial conductivity of the slave and master surfaces
ks and km, the conductivity of the material ®lling
the interface kf , and void area fraction fv, OÈ zisik
(1977),

hs � 1

Lg
fc

2kskm

ks � km
� fvkf

� �
: �87�

In general kf � ks; km so the last term in the
above equation can be neglected. The contact area
fraction generally depends on interface pressure.
We propose to use an exponential law for fc given
by

fc � 1ÿ c1eÿc2p; �88�
where c1 and c2 are parameters de®ning the initial
area fraction and the rate at which fc approaches
unity with pressure.

The heat ¯ux, de®ned in Eq. (85), is distributed
in both surfaces consistently with the discretized
formulation of the heat equation. Equivalent nod-
al forcing terms are computed by

rs
q �

Z
As

NTqp dA; �89�

where As is the slave node in¯uence surface area.
This force is balanced to the master nodes using
the variable n, distance from the ®rst node of the

contact face to the projection point, nondimen-
sionalized by the length of the face,

rs
q1 � �1ÿ n�rs

q; �90�

rs
q2 � nrs

q: �91�
For a time increment Dt, slave and master nodes
temperatures are corrected according to the fol-
lowing expressions,

cs1 � �1ÿ n�cs; �92�

cs2 � ncs; �93�

cI �
X

s

csI

 !
DTI �

X
s

rs
qIDt; �94�

TI � T̂I � DTI ; �95�

DTs � �1ÿ n�DT1 � nDT2; �96�

Ts � T̂s � DTs ÿ
rs

qDt

cs

� �
: �97�

In the above equations, the summation is over
the contributions from the slave nodes contacting
master node I , and DTs and DTI are predicted tem-
peratures in the absence of heat conduction at the
contact surfaces. It should be noted that, in con-
trast to the work by Marusich and Ortiz (1995),
in the present algorithm no assumption implying
continuity of the temperature ®eld across the con-
tact surface is made. Moreover, thermal contact
conductance and frictional heat sources are natu-
rally incorporated in the mechanical contact algo-
rithm. The scheme is easily implemented as part of
the contact algorithm discussed previously.

5. Adaptive mesh re®nement

Element distortion in Lagrangian dynamic ®-
nite element calculations can reduce the stable time
step of an explicit time integrator to a point where
the computation no longer advances and the ®eld
variables are not accurately interpolated. A solu-
tion to this problem is to rediscretize the domain
with a new, undistorted mesh, and continue with
the calculation. In history dependent problems,

H.D. Espinosa et al. / Mechanics of Materials 29 (1998) 275±305 289



as the mesh is adapted, the solution cannot be
computed from the initial state but has to be con-
tinued from the previously computed state. This
requires a procedure to transfer the problem state
variables from the old mesh Mn to the new mesh
Mn�1, while satisfying the ®eld and constitutive
equations, such that the calculation may continue
without excessive error. The transfer operator
needs to address the following issues.

(i) Requirements of static or dynamic equilibri-
um.
(ii) Consistency with the constitutive equations.
(iii) Compatibility of the state transfer with the
displacement ®eld on the new mesh Mn�1.
(iv) Compatibility with evolving boundary con-
ditions.
(v) Minimization of numerical di�usion of state
variables.

5.1. Update of con®guration

Central to the idea of replacing an old, highly
distorted mesh, with a new, undeformed mesh is
the update of the reference con®guration. The
model presented earlier, governing the body be-
havior, uses a Lagrangian formulation. If a mesh
is rebuilt, but the reference con®guration is not up-
dated, the distortion merely changes its location

from the current con®guration to that of the refer-
ence. To truly remove the distortion, the reference
con®guration must be perodically moved forward
to the current con®guration.

The reference con®guration is de®ned as the
con®guration at which the displacements are zero.
So part of updating the reference con®guration is
setting

x̂ � X� u; �98�

û � 0; �99�

x � x̂� û; �100�
wherein X, u, x̂, and û are the reference particle po-
sitions and displacements in the old and new refer-
ence con®gurations, respectively. In addition, after
the update, the new current particle position x is
de®ned by the new reference x̂ and displacement
û, as depicted in Fig. 7. More is required, however.
Remember that the deformation gradient relates
the current con®guration to the reference con®gu-
ration by

F � @x

@X
� @�X� u�

@X
� I� @u

@X
; �101�

where x is the current position ®eld. When the ref-
erence con®guration is updated, however, the rela-

Fig. 7. Update of current con®guration.
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tion becomes a bit more complicated. After an up-
date, the deformation gradient expands to

F � @x

@X
� @�X� u� û�

@X
�102�

� I� @u

@X
� @û

@x̂

@x̂

@X
�103�

� �I� @u

@X
� � @û

@x̂
�I� @u

@X
� �104�

such that @u=@X may be stored and reset at each
update as

@u

@X
� Fÿ I: �105�

We can then compute the deformation gradient F

as

Fold � I� @u

@X
; �106�

F � Fold � @û

@x̂
�I� @u

@X
�: �107�

In discretized form, Eq. (104) becomes

FiJ �
XNEN

a�1

Na;J xia �108�

� IiJ �
XNEN

a�1

Na;J uia �
XNEN

a�1

N̂a;kûia�IkJ �
XNEN

b�1

Nb;J ukb�;

�109�
where NEN is the number of nodes per element.
Shape functions derivatives, Na;J and N̂a;k, are de-
®ned with respect to the original and new reference
con®gurations, respectively.

5.2. Transfer of variables

Transfer of state variables can be accomplished
mainly in two ways.

(i) Direct transfer from Gauss points of the old
mesh Mn to the new mesh Mn�1 by standard inter-
polation,

(ii) Construct a solution which is continuous by
a suitable projection of state variables at quadra-
ture points, Zienkiewicz and Taylor (1991a),
namely,Z
X

P �Q�n�1 ÿ Qn�1�dX � 0 �110�

where P is a suitable projection operator, Q�n�1 are
the projected state variables, and Qn�1 are the state
variables obtained from the ®nite element solution.

A typical projections is obtained by using as P
the element shape functions. Depending on the do-
main X used in the projection, a local or global
transfer is obtained. This projection works very
well for the calculation of nodal stresses, but can
lead to numerical di�usion of internal variables in
regions of sharp gradients. Practice shows that nu-
merical di�usion is less pronounced when direct
transfer from the Gauss points of the old mesh
to the Gauss points of the new mesh is performed.

5.2.1. Interpolation and consistent computation of
®eld variables

In this subsection, a mesh transfer operator for
6-noded triangular elements, with full integration,
is described. These elements are selected because
construction of meshes by triangulation can be
done simply and automatically. Furthermore, it
is known that ®rst order triangles su�er from vol-
umetric and shear locking (Nagtegaal et al., 1974).
By contrast, six-noded elements with linear strain
interpolation do not lock (Hughes, 1987).

State variables in the new mesh are subdivided
in two sets, interpolated and computed variables,
see Table 3. For the interpolated set, the state vari-
ables are interpolated in the deformed con®gura-
tion based upon shape functions of an auxiliary
element connectivity of simple 3-node triangles
connecting all of the existing nodes in the old mesh
Mn. For each node in the new mesh, the area coor-
dinates of that node are computed for each auxil-
iary element connecting nodes in the old mesh.
These area coordinates are then used as shape
functions for the interpolation of the nodal vari-
ables. This sort of interpolation is conducted for
the nodal kinematic quantities, including displace-
ment, velocity, and acceleration. In addition, the
same sort of interpolation is performed for the
components of the stress tensor S and the internal
variables Q using this time an auxiliary mesh

Table 3

Interpolated and computed state variables

Set of interpolated variables: I�u; v; a; T ;S; �p; _ep; h;Fold�
Set of computed variables: C�s;Ce

;Fe;Fp�
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obtained by 3-node triangular elements connecting
quadrature points in the old mesh, as shown in
Fig. 8.

It should be noted that not all of the variables
may be interpolated. If everything was interpolat-
ed, the stress state after the mesh update would be
inconsistent with the state of displacement. The
problem then requires a suitable choice of ®eld
variables to be interpolated and other ®eld vari-
ables to be computed to keep the solution stable
and consistent with the equations of motion and
the material constitutive equations. The ®eld vari-
ables are divided into an interpolated set I and a
computed set C. The choice of interpolating S in-
stead of Fp, is based on the fact that errors pro-
duced in the interpolation of Fp are ampli®ed by
the elastic moduli in the computation of stress
from Fe � FFpÿ1

. This is possibly the most impor-
tant choice of our remeshing scheme and di�eren-
tiates it from other transfer operators proposed in
the literature, e.g., Marusich and Ortiz (1995). Re-
member that the deformation gradient has the
multiplicative decomposition F � FeFp. Hence, af-
ter interpolation of the set I the Fp can be comput-
ed from the stresses and displacements so that any
error introduced through the remeshing is mini-
mized and ends up in a compatible Fp.

The calculation of Fp requires the determination
of the elastic part of the deformation gradient in
the old mesh. Since in our ®nite deformation elas-
ticity law, S � L0:5 ln C

e
, where C

e � FeTFe, the

rotation tensor Re needs to be transferred between
the new and old meshes to allow the calculation of
Fe from S. Therefore, before the interpolation is
begun, the deformation gradient F is computed
from the displacement ®eld and the elastic part
of F, Fe, is computed from the multiplicative de-
composition of F at the quadrature points in the
old mesh, namely,

Fe � FFpÿ1

: �111�
Then, through a polar decomposition of Fe, a rota-
tion matrix Re may be identi®ed, and rendered
down to a rotation angle h as shown below.

Re � FeUeÿ1;

Re �
cos h ÿ sin h 0

sin h cos h 0

0 0 1

0B@
1CA: �112�

This theta is interpolated with the internal vari-
ables, then used to rebuild Re for the subsequesnt
calculation of Fp in the new mesh. Once the stress-
es and rotation angle have been interpolated, the
shape functions in the new mesh calculated, and
the deformation gradient F computed, from the in-
terpolated displacement ®eld u and Fold, in the new
mesh Mn�1, the plastic part of the deformation gra-
dient Fp is recalculated for each quadrature point
in Mn�1.

In order to preserve the strain rate and ensure
the plastic deformation is isochoric, corrections

Fig. 8. Interpolation from quadrature points in the old mesh to quadrature points in the new mesh.
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need to be carried on in the interpolated second Pi-
ola±Kirchho� stress tensor S and the computed Fe

as described below. Before calculating Fe, the in-
terpolated stresses must be corrected to maintain
a consistent rate of plastic straining. The current
material strength s��p; T � is updated using the in-
terpolated e�ective plastic strain �p according to
Eq. (23). In addition, the deviatoric portion of
the second Piola-Kirchho� stress tensor, Sdev, of
the interpolated stress tensor is corrected using
an interpolated e�ective plastic strain rate _�p, viz.,

S
corr

dev � S
int

dev

s

r

_�p � _�p
o

_�p
o

 !1=a

; �113�

after which the stress tensor is rebuilt with the new
Sdev. This is done to preserve the plastic strain rate
through the mesh, as the plastic strain rate is sen-
sitive to sudden changes in the e�ective stress. The
elastic right Cauchy±Green deformation tensor is
reconstructed from the material sti�ness tensor L
and the second Piola±Kirchho� stress S, to pro-
duce the elastic part of the deformation gradient
Fe, namely,

Ce � exp�2Lÿ1S�; �114�
Fe � Re

������
Ce
p

: �115�
Before computing Fp, Fe is scaled so that
det Fe � det F. This is necessary because the plas-
tic deformation is assumed to be isochoric
�det Fp � 1�. Finally, the plastic deformation gra-
dient is computed by

Fp � Feÿ1

F: �116�
If everything is done correctly, the Fp after remesh-
ing should resemble the Fp in the old mesh. A sum-
mary of our mesh transfer algorithm is given in
Tables 4 and 5.

5.3. Remeshing and mesh re®nement method

5.3.1. Remeshing condition
Transferring the state of a calculation from one

discretization to another is computationally expen-
sive. The key, therefore, to decide when to undergo
this process must be based on error estimates or in
the case of explicit time integrators, when the sta-
ble time step decreases to point that advances in

time fall below a prescribed value. A simple crite-
rion for remeshing, therefore, is to set a threshold
time step that will force remeshing. The condition

Table 4

Flowchart for the calculation of variables in set C from the in-

terpolated set I

u! F! Fcorr � det Fe

det F

� �1=3

F

#

F � FeFp ! Fp � Feÿ1

F

"

h! Re
������
C

e
p

� Fe ! det Fe

"

C
e � exp 2Lÿ1S

ÿ �
"

_�p;S! S
corr

dev � Sint
dev

s
r

_�p � _�p
0

_�p
0

 !1=a

"

_�p;S! s � r0 1� �
p

�p
0

� �1=b

1ÿ T ÿ T0

Tm ÿ T0

� �c� �

Table 5

Field variables transfer algorithm

1. De®ne boundaries for new mesh based on old mesh.

2. Create new set of corner nodes from old mesh. Re®ne as

necessary.

3. Create new elements by Delaunay triangulation.

4. Remove elements created outside mesh boundaries.

5. Optimize element shapes.

6. De®ne auxiliary interpolation meshes connecting nodes,

quadrature points.

7. Perform polar decomposition on Fe, and save orientation in

h.

8. Interpolate variables in set I (see Table 3).

9. Update reference con®guration.

10. Compute new shape functions.

11. Compute variables in set C (see Table 3).

12. Replace old state variables with new, and continue with the

calculation.
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currently in use compares the current time step to a
reference value set at the end of the previous re-
meshing. In this way, if the time step dwindles to be-
low a fraction of its reference value, a remeshing will
be triggered. This fraction is provided by the user.

5.3.2. Re®nement condition
When remeshing, it is useful to introduce more

elements in those regions of the mesh that are rap-
idly deforming. One way of deciding which regions
need to be re®ned is to examine the rates of plastic
work being produced in the elements, temperature
rise, the second invariant of the deviatoric rate of
deformation tensor, the maximum principal strain,
or the equivalent strain (Batra and Kuo, 1992; Ba-
tra and Hwang, 1993). All these measures become
quite large in regions where the material is deform-
ing inelastically at a high rate, for instance within
shear bands.

In the example later presented, the rate of plas-
tic work _W p is computed at each quadrature point
as _W p � r _�p. These work rates are averaged for the
element. The element rates are in turn averaged
over the whole mesh. Each element rate is com-
pared to the average to decide whether the element
should be re®ned, coarsened, or left unchanged.
This is made dependent on user-supplied thresh-
olds, as in

Ie �
XNQUAD

i�1

_W p
i =NQUAD; �117�

I �
XNUMEL

e�1

Ie=NUMEL; �118�

be � Ie=I ; �119�

be > bmax needs to refine;
be < bmin needs to coarsen;

�120�

where bmax is a threshold number greater than one,
and bmin is between zero and one. In addition,
maximum and minimum element sizes are de®ned
to limit re®nement and coarsening that could lead
to excessive computational times or poor accuracy.

5.3.3. Element re®nement
When a remeshing is triggered, the new mesh is

created by a delaunay triangulation algorithm, re-

de®ning the element connectivity using the current
locations of all of the corner nodes from the old
mesh. When an element is ¯agged for re®nement,
its midnodes are added to the corner node list, re-
sulting in several elements being created where just
one existed before. This method for re®nement is
used primarily because it is a very simple and easy
way to introduce new elements. Even those ele-
ments which are not re®ned or optimized are im-
proved in the remeshing operation. As the
delaunay triangulation routine creates new 6-node
elements from existing corner nodes, it attempts to
connect them so that the elements are as close to
equilateral as convenient. In addition, new mid-
nodes are created at the midpoints of the element
sides, so that new elements are perfectly triangular.
Of course, mesh re®nement requires several other
considerations that greatly depend on the speci®cs
of the problem being studied. For example, the
boundary conditions would need to be set for the
new mesh and the nodes on the surfaces of bodies
rede®ned for contact. In addition, in a multi-body
contact problem, it is possible that for some of the
bodies, remeshing is neither needed nor desired.
These are problems that may be considered on a
case-by-case basis.

5.4. Mesh optimization

Not all meshes are suitable for ®nite element
calculations. The error due to the approximations
depends on the size and the shape of the elements.
The element sizes are chosen as a compromise be-
tween accuracy and computing cost, and may vary
through the domain according to error estimates
or user's experience. Good meshes may be set
apart from bad ones by the shapes of the elements
contained within. Distorted elements produce er-
rors which degrade the quality of the calculation,
and elements with a good initial shape may distort
as they follow the movement of the domain's
boundary. This has motivated intensive research
on mesh-improving techniques, and much experi-
ence in smoothing meshes has come from the ®eld
of deformable domains. In Zavattieri et al. (sub-
mitted), it was proposed to use, as quality of the
mesh, the quality of its worst element, de®ned by
a measure Q,
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Qglobal � min
k

Qk: �121�
This choice incorporates a well-known fact that
one unacceptable element renders the mesh use-
less. The problem then becomes one of maximizing
an objective function of the min type. As min func-
tions are nondi�erentiable, a simple node-by-node
algorithm (described later) is used. This implemen-
tation uses a node-movement algorithm that, in
most cases, produces a sequence of meshes of non-
decreasing quality.

5.4.1. A global mesh optimization algorithm
The simultaneous optimization of the locations

of all of the nodes in a mesh consisting of thou-
sands of elements is obviously untractable. In Za-
vattieri et al. (submitted), it is shown that to
improve the worst element of the mesh, it is only
necessary to move those nodes located in close vi-
cinity to it (up to its neighbors of order 1 or 2).
Also, in Zavattieri et al. (1996), they have incorpo-
rated a computationally inexpensive measure of
the quality of a triangle, namely,

Qe � C
Ae

P2
e

; �122�

where Ae is the area of element e, Pe its perimeter
(the sum of the lengths of its three edges), and C is
a constant which renders the quality of an equilat-
eral triangle equal to one (C � 20:784619). The ad-
vantages of this de®nition of quality is discussed in
Zavattieri (1995).

The objective function Qglobal is maximized over
the space of nodal locations. We only modify the
positions of those nodes that belong to the worst

element of the mesh, and their nth-order neighbors
(with n� 1 or 2). We will refer to as moving nodes
those nodes that are moving at a given stage of the
algorithm. The moving nodes are selected among
the movable nodes. In the present version of our
method, boundary nodes are nonmovable. If all
the nodes belonging to an element are nonmovable,
the element is not considered. The algorithm which
identi®es nodes as moving, movable or nonmovable
is displayed in Table 6. The current implementa-
tion uses NL� 2, and M�NUMEL/3 where
NUMEL is the number of element of the mesh.

5.4.2. Local cluster optimization
The nodal position of each node I is modi®ed to

maximize the quality Qe of the elements that share
this node. Let us de®ne the cluster CI associated to
a node I of a triangulation as the set of elements
that share this node. We associate to the cluster
CI a scalar quantity, the quality of the cluster, de-
®ned by

qC � min
e2CI

Qe: �123�

Quality qC is continuous function of the position xI

of the central node I of the cluster. We next intro-
duce a set of sampling positions. Let x0

I be the orig-
inal position of node I. Then, for every vertex V of
the cluster de®ne two sampling points located at

xsp � �axv � �1� a�x0
I ; �124�

where a is a small parameter, typically 0.05. Notice
that x0

I is itself a sampling position. In two dimen-
sions, the set of sampling points de®ned in this way
would look much as in Fig. 9.

Table 6

Identi®cation of moving nodes

1. Initialization and Global Parameters: Specify a neighborhood level NL and a maximum number of iterations M. Set boundary

nodes as nonmovable. Initialize an integer auxiliary constant PREV with 0.

2. Identify the worst element among those elements of the mesh containing at least one movable node, KWORST. If the number of

movable nodes is zero, stop.

3. If KWORST�PREV, set the three corner nodes of KWORST as nonmovable and go back to 2.

4. Identify the nodes in a neighborhood of order NL of KWORST. The neighbors of order 0 are the four nodes belonging to

KWORST. Neighbors of order 1 are those nodes that are not neighbors of order 0, but are connected by an edge with at least one

neighbor of order 0; and so on.

5. Set as moving nodes those identi®ed in 3 that have not previously been set as nonmovable. Sweep these moving nodes modifying the

nodal positions one at a time, according to the local cluster optimization rule, so as to improve the quality of the cluster.

6. Assign to PREV the value KWORST.

7. Go back to 2, or Stop if the number of iterations is equal to M.
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The local cluster optimization rule that has been
implemented is the following:

Evaluate qI for all sampling positions, and
choose as updated position the sampling posi-
tion that maximizes this quality.

Most clusters with bad initial quality attain very
high quality in just a few iterations, and then spend
lots of local iterations improving the quality from,
say, 0.4±0.45. A good implementation should con-
sider this possibility and stop the local iterations
whenever a cluster has reached a quality that is
greater that some given threshold value QTol, so
as to avoid wasting CPU time improving al-
ready-good clusters, and turn to worse ones. In
the calculations later reported a value of
QTol � 0:9 was used.

6. An application to rod on rod impact

One important objective in developing a ®nite
element model accounting for large deformation
plasticity and brittle failure is the ability of simu-
lating specially designed experiments towards the
identi®cation of material inelasticity and failure
mechanisms. One such experiment involves the

collision of a 6061-T6 aluminum anvil with uncon-
®ned and con®ned AD-99.5 alumina rods in a
modi®ed Taylor test (Wise and Grady, 1994). In
this test, interferometric measurement of radial
and axial velocities provides an estimate of the
compressive dynamic yield strength of the ceramic
rod under uniaxial stress. In Wise and Grady ex-
periments, the ceramic rod free end velocity was
measured with a velocity interferometer (VISAR).
Unlike the Taylor test, which was extensively used
in the high strain rate characterization of metals,
analyses of the experimentally recorded velocity
histories do not rely on any simplifying assump-
tions regarding rod deformation, and do not re-
quire an intact rod for recovery. This makes the
modi®ed Taylor test very useful for the study of
ceramics failure through numerical simulation of
the failure event.

6.1. Problem geometry

For this problem, the aluminum impactor is
formed into a 134.7 mm long T-shaped rod with
diameters of 20 and 89 mm for the rod and T-
¯ange, respectively. The ¯ange is 12.7 mm thick,
while the trailing rod is 122 mm long. The rod sec-
tion of the anvil was initially incorporated by Wise
and Grady to maximize the duration of high stress
levels at the impact end of the target rod. The ce-
ramic rod being tested is an AD-99.5 alumina rod
80 mm long, with a 10.06 mm diameter. In the case
of con®ned alumina, a tantalum sleeve, 20 mm in
diameter, is used.

In our simulations, the anvil is modeled with 6-
node axisymmetric triangular elements using the
large deformation plasticity model presented earli-
er. Mesh re®nement and optimization are perform-
ed. The ceramic rod also uses 6-node axisymmetric
triangular elements, but this time based on the
small-strain microcracking multiple-plane model
previously discussed. No remeshing or optimiza-
tion is done for the alumina rod. Since material
models for fragmentation of ceramics accounting
for temperature e�ects are not currently available,
we have not computed the thermal ®eld. The prop-
erties of the two materials being used and the pa-
rameters used in the de®nition of contact are
displayed in Tables 7±9. The ceramic model

Fig. 9. Sampling positions for local cluster optimization in 2-D.

296 H.D. Espinosa et al. / Mechanics of Materials 29 (1998) 275±305



parameters are selected such that a damage thresh-
old is properly captured and at the same time they
are in agreement with values reported in the liter-

ature. It should be noted that microstructural dif-
ferences have an e�ect on model parameters. For
instance, the existence of a second phase at the
grain boundaries controls parameters l, n�;m�

and KIC. The grain size controls the values of a0

and maximum crack density of each orientation.
The choice of di�erent crack densities as a function
of orientation is motivated by experimental data
(Espinosa et al., 1992) indicating that the density
of active microcracks is a function of the mecha-
nism responsible for crack nucleation. In the case
of predominantly compressive stress states, glass
at the grain boundaries determines the early stages
of inelasticity and acts as a precursor for the devel-
opment of triple point microcracks. In the case of
predominantly tensile stress states, cracks are
mainly nucleated due to grain boundary decohe-
sion at a much lower stress level. In the present
axisymmetric calculations, plane 1 is a plane on
which positive normal tractions result from un-
loading waves emanating from the bar surface.
By contrast planes 6 and 8 are mainly shear cracks.

In the calculation featured here, the anvil strikes
the specimen at 1035 m/s (for con®nement 1051 m/
s), in an attempt to simulate the conditions for
shots 5 and 6 in Wise and Grady's experiments.

6.2. Velocity and stress histories

During the impact calculation, the axial velocity
at the free end of the ceramic rod was recorded for
comparison with the experimental results of Wise
and Grady (1994). In the uncon®ned ceramic rod
experimental records, shown in Fig. 10, the veloc-
ity curve is shaped by the arrival of an initial com-
pression, followed by a second compression wave
that brought the surface velocity to its highest val-
ue on the order of 0.19 mm/ls, according to Wise
and Grady (1994). The ®rst wave travels at the ul-
trasonic longitudinal wave speed CL � 10:6 mm/
ls, while the second wave propagated at the calcu-
lated bar wave speed CB � 9:81 mm/ls. After the
velocity peaked, it decayed by about 20% to a rel-
atively constant velocity. A similar velocity pro®le
is observed in the case of the con®ned ceramic rod,
only that this time the peak velocity is about 0.32
mm/ls. Two numerical simulations, uncon®ned
and con®ned ceramic, are plotted in Fig. 10. The

Table 7

Material properties for aluminum and tantalum

6061-T6 Aluminum Tantalum

Elastic properties

E [GPa] 69.0 189.38

m 0.3299 0.3327

q0 [kg/m3] 2700 16607

Inelastic properties

r0 [MPa] 270 700

�p
0 0.003913 0.003696

_�p
0 [sÿ1] 1000 1000

a 3 5

b 15 5

Table 8

Material properties for alumina

AD-99.5 Alumina ceramic

Elastic properties

E � 374 GPa Young's modulus

l � 0:22 Poisson's ratio

q0 � 3890 kg/m3 Density

Inelastic properties

m � 0:1 Internal friction coe�cient

cR � 5000 m/s Wave speed

KIC � 1:7� 106 Critical stress intensity factor

a0 � 10 lm Initial crack radius

c1
n � 1:0� 1012 mÿ3 Crack density for plane 1

c2
n � 1:0� 1012 mÿ3 Crack density for plane 2

c3
n � 0:0 Crack density for plane 3

c4
n � 0:0 Crack density for plane 4

c5
n � 0:0 Crack density for plane 5

c6
n � 5:0� 1010 mÿ3 Crack density for plane 6

c7
n � 0:0 Crack density for plane 7

c8
n � 5:0� 1010 mÿ3 Crack density for plane 8

c9
n � 0:0 Crack density for plane 9

n� � 0:3 Ratio 1 (tension)

nÿ � 0:1 Ratio 2 (compression)

m� � 0:3 Power 1 (tension)

mÿ � 0:1 Power 2 (compression)

Table 9

Contact constants

Contact properties

l0 � 0:0 Static friction coe�.

l1 � 0:0 Dynamic friction coe�.

c � 0:0 Friction law exponent

b � 0:0 Contact weighting parameter
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calculated free surface velocity, in both numerical
simulation, rises quickly to a peak on the order
of 0.19 mm/ls and 0.34 mm/ls, respectively. In
the numerical simulations, the wave arrival shows
some retardation. This retarded arrival is likely
due to the dispersion caused by the spatial discret-
ization currently modeling the ceramic. In the case
of uncon®ned ceramic, the ®rst compressive pulse
appears in the velocity trace, although its magni-
tude is about twice the magnitude of the experi-
mentally recorded ®rst compressive pulse. After
the peak, the numerically computed velocities de-
cay progressively to a mean value that is about
75% of the peak value. The continuous decay in
axial free surface velocity is in contrast to the ex-
perimental records which show almost a constant
axial velocity after the initial transient. The dis-
crepancy is even more evident in the case of con-
®ned alumina. Espinosa and Brar (1995) showed
that the almost constant axial velocity, at the ce-
ramic bar end, is the result of ceramic spallation
upon wave re¯ection at the ceramic rod free sur-
face. This is also the case in the present simulations
though the velocity never becomes constant.

The lack of a well de®ned elastic precursor in
the numerically obtained axial velocity history,
needs further investigation. It may be due, at least
in part, to insu�cient inelasticity in the ceramic
model. In the present model, only microcracking
is considered. It was shown by Espinosa et al.

(1992), that the glassy phase present in the ceramic
microstructure, can lead to a viscoplastic like be-
havior that can result in further wave front atten-
uation (precursor decay).

In Fig. 11, the radial velocity in the case of con-
®ned alumina, at 30 mm from the impact surface is
plotted. In this ®gure both the experimental record
and the numerical trace are shown. Despite a small
overshoot of the peak radial velocity, the numeri-
cal solution captures the main features observed
in the experimental trace. This agreement further

Fig. 10. Axial velocity on alumina bar free surface for both con®ned and uncon®ned ceramic bars.

Fig. 11. Radial velocity of sleeve outer surface at 30 mm from

the impact plane.
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show that the physics of damage and inelasticity
are captured by the proposed models.

Further insight into the damage process, within
the alumina bar, can be obtained from a plot of
axial stress histories at various depths from the im-
pact surface. In Fig. 12, these stress histories are
plotted at a quadrature point located near the ce-
ramic/tantalum interface. Several features can be
observed. At 10 mm from the impact surface, the
axial stress rapidly increases to a peak compressive
stress of about 11 GPa. A progressive pulse decay
follows with a total pulse duration of approxi-
mately 6 ls. Similar pro®les are observed at sta-
tions farther away from the impact surface;
although, the peak stress decays to a value of
about 9 GPa at 50 mm. The decay and pulse shape
are the result of damage and geometric e�ects
(Espinosa and Brar, 1995). It should be noted, that
the pulse shape plays an important role in the ce-
ramic free end axial velocity, see Fig. 10. In fact,
when a pulse with the shape shown in Fig. 12
reaches the bar free end, material spallation is ex-
pected to occur upon wave re¯ection.

The e�ectiveness of the tantalum sleeve, ceramic
con®nement, can be inferred from radial stress his-
tories, see Fig. 13. In this ®gure, con®nement
stresses at the same quadrature points and depths
from the impact surface are plotted. The traces re-
veal that at 10 mm from the impact surface, an av-
erage con®nement of approximately 2 GPa is

achieved for about 2.5 ls. After that, the stress de-
cays signi®cantly resulting in lost of con®nement,
ceramic±tantalum interface separation, at about
7 ls after impact. Similar features are observed
at stations farther away from the impact surface.
However, in contrast to the station at 10 mm, con-
tact between the ceramic bar and tantalum sleeve
is preserved in the ®rst 10 ls. Since in the present
con®guration the con®nement stress is mainly the
result of Poisson's e�ect, a correlation between
the axial stress histories and the con®nement stress
histories is observed.

6.3. Contours and mesh evolution

To illustrate the features included in the compu-
tational algorithm, mesh re®nement and optimiza-
tion, mechanical contact, and material inelasticity,
a series of contour/mesh plots showing the state of
the ®nite element calculation every 2 ls is present-
ed. Figs. 14±17 are a series of contour plots show-
ing the axial velocities throughout the rods, every 2
ls, for both con®ned and uncon®ned ceramic rods.
As time progresses, we can see the stress wave
move up the alumina rod (the upper rod) at a ve-
locity of about 10,000 m/s. Notice that the alumina
rod behaves in a more sti� manner than the plasti-
cally-deforming aluminum and tantalum rods, up
until around 10 ls after impact. Then the elements

Fig. 12. Axial stress history in alumina bar for con®ned ceramic. Fig. 13. Radial stress history at ceramic/tantalum interface.
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at the end of the alumina rod reach a point in their
state of cracking where they are essentially pulver-
ized, and lose most of their sti�ness. A wavy shape
on the surface of the alumina rod is an indication
of the degree of damage. Note that most of the in-
elastic deformation is concentrated in the elements
on the very end of the rod and in a spall region
near the upper end which trapped the rebounding
tensile wave.

It is important to note that the severe damage
accumulated in the alumina rod, in the proximity
of the impact surface, becomes possible either by
the absence of con®nement or by the separation

of the tantalum sleeve at about 7 ls, see Fig. 15.
In the case of con®ned ceramic, the observed gap
at the alumina±tantalum interface propagates
away from the impact surface as seen in the se-
quence of mesh plots. This feature has a very im-
portant implication in the identi®cation of
damage and fragmentation. It shows that the met-
al sleeve can provide only partial con®nement dur-
ing the ®rst 5±6 ls.

As expected, the aluminum anvil is cratered by
the impact with the ceramic specimen, and pro-
vides a good test for the contact and remeshing ca-
pabilities of the algorithms presented in this paper.

Fig. 14. Axial velocity contours at t� 2 and 4 ls.

Fig. 15. Axial velocity contours at t� 6 and 8 ls.

Fig. 16. Axial velocity contours at t� 10 and 12 ls.

Fig. 17. Axial velocity contours at t� 14 and 16 ls.
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The contact algorithm implemented in this calcula-
tion allows the aluminum to ¯ow around the pen-
etrating ceramic rod, gradually tracking the
surfaces and rede®ning closest master nodes to re-
¯ect the physical problem. As deformation in-
creases, the mesh re®nes itself several times
automatically, using the rate of plastic work condi-
tion mentioned previously. Each time, all the ele-
ments with a work rate ratio of bmax > 1:1 were
re®ned. Note that elements that were smaller than
hmin � 0:5 mm across were not re®ned. One test of
the interpolation and recomputation of the state
variables due to a mesh rezoning is whether the
mesh continues on after the rezoning without
any sudden changes in the ®eld variables. Upon
examination of the velocity history in Fig. 10, it
can be seen that no discontinuities in velocity or
acceleration are introduced by mesh re®nement.
One interesting aspect of this problem is that the
most rapid plastic deformation in the aluminum,
as highlighted by the mesh re®nement, is con®ned
to a band of roughly constant width, instead of
producing a smooth gradient over a larger area.

Also displayed, in Figs. 18±21, are contours of
the e�ective plastic strain in the aluminum and
tantalum rods at 2, 4, 6, and 8 ls into the calcula-
tion. The evolution of the mesh with automatic re-
®nement and optimization, for both con®ned and
uncon®ned ceramic, can be observed. Note that

at 4 ls after collision, although the plastic strain
is severe right near the surface, it possesses a fairly
smooth gradient down to the low-strain regions.
At 8 ls, however, the edge of the zone of large-
scale plastic deformation has become well de®ned,
where the e�ective plastic strain leaps from around
0.1 to greater than 1.0 in a very steep gradient.
What is interesting is that the contours for the
low strain (< 0:4) do not change very much be-
tween 6 and 8 ls. Most of the strain localizes in
a band near the surface. Consistent with the for-
mation of this band is the accumulation of small
elements resulting from the mesh re®nement algo-
rithm previously discussed.

7. Concluding remarks

An adaptive ®nite element computation of geo-
metric and material nonlinearities was presented
within a uni®ed framework. A total Lagrangian
formulation was used to describe the ®eld equa-
tions. Since Lagrangian approaches lead to exces-
sive mesh distortions in ®nite deformation
computations, algorithms for mesh rezoning, opti-
mization, and re®nement were implemented to ef-
®ciently advance the calculations in time. Contact
between multiple-bodies was handled with an ex-
plicit contact scheme introduced by Taylor and

Fig. 18. E�ective plastic strain contours at t� 2 ls.
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Flanagan (1987). Extensions for the tratement of
cohesive interfaces and heat ¯uxes between sliding
bodies were also presented.

The various algorithms were implemented and
tested in the analysis of brittle failure of ceramic
rods, with and without con®nement. Experiments
reported by Wise and Grady (1994), were simu-
lated through axisymmetric calculations. Damage
in the ceramic was modeled by means of a multi-
ple-plane microcracking model, while the plastic
deformation of the aluminum impactor was mod-

eled with a viscoplastic ®nite deformation model.
Our simulations captured the physics of the prob-
lem and illustrated the e�ect of con®nement in the
failure of ceramics. Insight into the failure process
was obtained through analysis of axial and radial
velocity histories. Moreover, computed in-material
stress histories improved our understanding of the
e�ect of damage rate, and pulse shape and dura-
tion in the measured axial velocities. Di�culties
in preserving the con®nement, at late times, in a re-
gion close to the impact surface were also revealed

Fig. 19. E�ective plastic strain contours at t� 4 ls.

Fig. 20. E�ective plastic strain contours at t� 6 ls.
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by the calculations. As a result, fragmentation of
the ceramic rod, in a fashion similar to the frag-
mentation observed in high speed photography
of uncon®ned ceramic rods (Espinosa and Brar,
1995) could be expected.

It should be noted that, due to tilt, the rod on
rod impact experiment is a 3-D problem. Since
fragmentation of brittle materials may be strongly
sensitive to tilt, our axisymmetric approximation
may not have captured all the features present in
the experimental records reported by Wise and
Grady (1994). This and other challenges in the
modeling of brittle materials still remain. A model
coupling plasticity and microcracking seems to be
needed for a proper description of the early stages
of inelasticty including the determination of crack
densities. Early inelasticity is believed to be re-
sponsible for the masured elastic precursors. Al-
though we have shown that a continuum damage
model can capture ceramic inelasticity quite well,
and that measured velocity pro®les can be repro-
duced with a multiple-plane microcracking model,
real applications may require analysis of the tran-
sition from a continuum to multi bodies as a result
of material fragmentation. In principle, the con-
tact/cohesive interface model proposed in this pa-
per could be used for such analyses. However, a
well thought out scheme for the transition is re-
quired to properly represent the physics of frag-

mentation without a priori assumptions on
fragment sizes which may lead to mesh dependent
results.
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