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Abstract

A model is presented for the dynamic finite element analysis of ceramic microstructures
subjected to multi-axial dynamic loading. This model solves an initial-boundary value problem
using a multi-body contact model integrated with interface elements to simulate microcracking
at grain boundaries and subsequent large sliding, opening and closing of microcracks. An
explicit time integration scheme is adopted to integrate the system of spatially discretized
ordinary differential equations. A systematic and parametric study of the effect of interface
element parameters, grain anisotropy, stochastic distribution of interface properties, grain size
and grain morphology is carried out. Numerical results are shown in terms of microcrack
patterns and evolution of crack density, i.e., damage kinetics. The brittle behavior of the micro-
structure as the interfacial strength decreases is investigated. Crack patterns on the representa-
tive volume element vary from grains totally detached from each other to a few short cracks,
nucleated at voids, except, for the case of microstructures with initial flaws. Grain elastic
anisotropy seems to play an important role in microfracture presenting higher values of crack
density than the isotropic case. The computational results also show that decreasing the grain
size results in a decrease in crack density per unit area at equal multiaxial dynamic loading.
Histograms of crack density distribution are presented for the study of the stochasticity of
interface parameters. Finally, a strong dependency with grain shape is observed for different
microstructures generated using Voronoi Tessellation. The micromechanical model here dis-
cussed allows the study of material pulverization upon unloading. The qualitative and quantitat-
ive results presented in this article are useful in developing more refined continuum theories
on fracture properties of ceramics. 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Being naturally brittle, ceramics undergo fragmentation when subjected to multiax-
ial loading. The shear resistance of confined ceramics plays a major role in the
prevention of ballistic penetration, wear of bearings, fracture of prosthetic devices,
fracture and wear of coatings, etc. Therefore, understanding the shear resistance of
ceramics is important for estimating and improving their strength. It is known that
investigating experimentally the behavior of ceramics is a difficult task. Moreover,
experiments do not always provide direct information on crack densities and their
evolution. The implementation of an iterative computational/experimental procedure
requires reliable material models, physically motivated, incorporating microfailure
and macrofracture at various size scales.

Attempts have been made to model the inelastic constitutive behavior of ceramics
in the presence of cracks, and to validate the models through simulation of plate and
rod impact experiments. Available models for the failure of ceramics are continuum
damage theories (Addessio and Johnson, 1989; Curran et al., 1990; Espinosa, 1995;
Johnson and Holmquist, 1992), which are based on homogenizing the cracked solid
and finding its response by degrading the elasticity of the material. The fundamental
assumption in these models is that the inelastic strains are caused by microcracks
whose evaluation during loading degrades the strength of the material. This degra-
dation is defined in terms of reduced moduli whose evaluation under compressive,
as well as tensile loading, is formulated using the generalized Griffith criterion. In
addition, some of these models account for the initiation of cracks, coalescence,
friction between fragments in the comminuted zone, etc. However, some of these
phenomenological models cannot describe damage induced anisotropy, their para-
meters are difficult to measure experimentally, and do not explicitly consider the
discrete nature of fracture through crack growth and coalescence.

In spite of the above developments, continuum models have been criticized
because they require assumptions on the size and distribution of microcracks to start
with, and because they cannot describe the growth of dominant cracks leading to
failure, which are not suitable to homogenization. Models based on a discrete
approach (Camacho and Ortiz, 1996; Espinosa et al., 1998b; Miller et al., 1999;
Xu and Needleman, 1995; etc.) nucleate cracks, and follow their propagation and
coalescence during the deformation process. This is a phenomenological framework
where the fracture characteristics of the material are embedded in a cohesive surface
traction-displacement relation.

During the last few years, the mechanical behavior of polycrystalline ceramics
has been studied quite extensively on a microstructural base. The influence of micro-
scopic heterogeneities on the overall behavior, depends on morphological character-
istics such as size, shape, lattice orientation and spatial distribution of different
material properties. In our view, the calculation of stress and strain distributions in
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real and idealized microstructures can increase the understanding of the different
mechanisms that control macroscopic response. Furthermore, these micromechanical
simulations can be useful for quantification and determination of failure mechanisms,
as well as the derivation of evolution equations to be used in continuum models,
(Curran et al., 1990; Espinosa, 1995; Espinosa et al., 1998b). In this way, bridging
between length scales can be accomplished.

In the case of metal–matrix composites, Ghosh and Yunshan (1995) and Ghosh
et al. (1997) developed a material basedVoronoi Cell Finite Element Model
(VCFEM) in an attempt to overcome difficulties in modeling arbitrary microstruc-
tures by conventional finite element methods. Voronoi cells are utilized to obtain
stereologic information for the different morphologies. The microscopic analysis is
conducted with the Voronoi cell finite element model while a conventional displace-
ment based FEM code executes the macroscopic analysis. This method has been
tested in several heterogeneous microstructures. Discrete microcracking was not
explicitly included in this model.

Onck and Van der Giessen (1999) proposed a microstructurally-based modeling
technique to study the intergranular creep failure of polycrystals by means ofgrain
elements. A crack tip process zone was used in which grains and their grain bound-
aries were represented discretely, while the surrounding undamaged material was
described as a continuum. The constitutive description of tile grain boundaries
accounted for the relevant physical mechanisms, i.e. viscous grain boundary sliding,
the nucleation and growth of grain boundary cavities, and microcracking by the
coalescence of cavities. Discrete propagation of the main crack occurred by linking
up of neighboring facet microcracks.

Wu and Niu (1995a,b) presented a micromechanical model of the fracture of
polycrystalline ice. Their model is based on a statistical description of the ice micro-
structure, which contains crystals of random sizes and orientations and a random
distribution of grain boundary crack precursors. The analysis takes into account
microstructural stresses originating from the elastic anisotropy of the constituent
crystals. Friction in precursors and crack–crack interactions are also considered. The
model is applied to several microstructures generated from a graph model. It was
shown that the critical crack density, and critical damage, were not appropriate
descriptors of failure, that the compressive strength was strongly dependent, on the
microstructural variations and that crack–crack interactions were very important in
compressive fracture.

Kim et al. (1996) studied crack propagation in alumina ceramics. The competition
between intergranular and transgranular propagation was utilized to determine the
crack path.

Miller et al. (1999) considered models based on energy balance and compared
their predictions of fragment size to the results of numerical simulations. They found
differences due to the fact that the energy-based models deal with the onset of the
fragmentation event, but they do not include the time dependence of the process.
Therefore, they proposed a model that included the time history of the fragmentation
process and parameters such as the speed of crack propagation, and the strength and
flaw distribution.
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In this paper, a micro-mechanical finite element, modeling of ceramic microstruc-
tures under dynamic loading is presented to assess intergranular microcrack initiation
and evolution. A representative volume element of an actual microstructure, sub-
jected to compression–shear dynamic loading, is considered for the analysis. A large
deformation elastic–anisotropic viscoplasticity model for the grains, incorporating
grain anisotropy by randomly generating principal material directions, is included.
Cohesive interface elements are embedded along grain boundaries to simulate
microcrack initiation and evolution. Their interaction and coalescence are a natural
outcome of the calculated material response.

A systematic and parametric study of the effect of different factors is carried out.
The effects of interface element parameters, grain anisotropy, grain size and a stoch-
astic distribution of interface properties are studied in terms of microcrack initiation
and evolution and crack density. The pulverization of the material upon unloading
is examined with the microstructural model. The qualitative and quantitative results
presented in this article are intended to provide valuable insight for developing more
refined continuum theories on fracture properties of ceramics.

2. Computational model

The finite element analysis of the initial boundary value problem is performed
using a total Lagrangian continuum approach with a large deformation elastic–aniso-
tropic model.

A displacement based finite element formulation is obtained from the weak form
of the momentum balance or dynamic principle of virtual work. The weak form at
time t in total Lagrangian co-ordinates, (i.e., referred to the reference configuration),
is given by

E
B0

[=0T01r0(b02a)]·h dB050 (1)

E
B0

T0:=0h dB02E
B0

r0(b02a)·h dB02 E
S0s

t·h dS050 (2)

where T0 is the first, Piola–Kirchhoff stress tensor at timet; b0, a, and t are the
body force vector, acceleration vector, and boundary traction vector on volumeB0,
and boundaryS0s, respectively. Virtual displacement fieldh is assumed to be admiss-
ible, andr0 represents the material density per unit, volume in the reference con-
figuration. The symbol=0 denotes the material gradient with respect to the reference
configuration, and “:” is used to denote the inner product between second order
tensors, e.g.,A:B;AijBji, where the summation convention on repeated indices is
implied.

Alternately, the weak form of the momentum balance, in terms of spatial quan-
tities, is given by
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E
B0

t:=sh dB02 E
B0

r0(b02a)·h dB02 E
S0s

t·h dS050 (3)

in which superscripts stands for the symmetric part of the tensor,t=FT0 is the
Kirchhoff stress,F is the deformation gradient at timet, and= is the spatial defor-
mation tensor. As Eq. (3) shows, the equation of motion in its weak form states that
the work done by the stressest over strains=sh equals the work done by applied
body forces, inertia forces, and surface tractions.

In the absence of body forces, substitution of the discretized variables into Eq.
(3) leads to the following system of ordinary differential equations. The above equ-
ation can be written at timet for explicit integration as,

Ma5fext2f int (4)

whereM is the lumped mass matrix,a is the global acceleration vector andfext and
fint are the external and internal force vectors. In order to obtain a uniform mass
distribution in the mesh, the element mass was lumped proportional to the angles
formed by the corner nodes and midnodes, as detailed in Espinosa et al. (1998b).

2.1. Anisotropic elastic model

An elastic–anisotropic model is used to describe the grains single crystal behavior.
The second Piola–Kirchhoff stress tensor relative to the underformed configuration
is described by

Sij 5CijklHkl (5)

WhereH=
1
2
lnC is a logarithmic strain measure or Henky strain,C=FFT is the elastic

right Cauchy–Green deformation tensor, andCijkl is the elastic anisotropic material
stiffness tensor in the global co-ordinates (x,y,z).

In the case of anisotropic crystals, the elastic constitutive matrixĈIJKL is defined
in the local co-ordinate system of the grain by its principal material directions (1,2,3),
such thatCijkl=Tc

iITc
jJTc

kKTc
lLĈIJKL, whereTc is the transformation matrix.

Each grain is assumed to be elastic orthotropic and the orientation of the principal
material directions differs from grain to grain. In order to keep the plane strain
condition in thex-y plane, one of the principal material directions has to coincide
with the z-axis. Therefore, three cases are considered randomly for each grain, Case
1: 1;z, Case 2: 2;z or Case 3: 3;z (see Fig. 1). The angle between the global
axesx, y, and the two local axes lying in the planex-y is also generated randomly.
The grain local axes and the corresponding analysis global axes are shown in Fig.
2. In general, this approach could be used for any orthotropic materials where the
normal to the three symmetry planes coincides with the local axes of co-ordinates.
i.e. tetragonal systems: Indium, Tin, Zircon; transversely isotropic systems: Cad-
mium, Ice, Zinc; cubic: Aluminum, Copper, Nickel, etc.



32 P.D. Zavattieri et al. / Journal of the Mechanics and Physics of Solids 49 (2001) 27–68

Fig. 1. Description of the principal material directions (1, 2, 3) of each grain relative to the global co-
ordinates of the overall microstructure (x, y, z). Actual picture of the microstructure utilized for the FEM
analysis where each grain is represented by a six-noded triangular mesh.

2.2. Contact/interface algorithm

A multi-body contact-interface algorithm to describe the kinematics at the grain
boundaries is used to simulate crack initiation and propagation, Espinosa et al.
(1998a,b, 2000). An explicit time integration scheme is adapted to integrate the sys-
tem of spatially discretized ordinary differential equations. Fig. 3 describes the con-
tact model which is integrated with interface elements to simulate microcracking at
the grain boundaries and subsequent large sliding, opening and closing of the inter-
face. The tensile and shear tractions in the zero thickness interface elements, embed-
ded along grain boundaries, are calculated from the interface cohesive law. The inter-
face cohesive law describes the evolution of these tractions in terms of both normal
and tangential displacement jumps. Within the framework of cohesive interface
elements the two most noteworthy cohesive failure models available in the literature
are the potential-based law used by Tvergaard (1990) and Xu and Needleman (1995),
and the linear law developed by Camacho and Ortiz (1996) and Ortiz and Pan-
dolfi (1999).

The model presented in this paper is based on the interface model proposed by
Espinosa et al. (2000b) for dynamic calculations. It assumes that the interface carries
forces that oppose separation and shear between two surfaces until debonding. The
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Fig. 2. Distribution of the principal material directions. Different intensities of gray indicate which
principal direction coincides with the globalz axis. The local system of co-ordinates in thex–y plane is
represented by two vectors.

magnitude of these forces is a function of the relative separation and shear displace-
ments between the two surfaces. The compressive tractions at the grain boundaries
are calculated through the impenetrability condition employed in the contact model.
The interface between two bodies is intact until the interface traction reaches the
maximum value. Once the maximum traction is reached, the interface starts failing
and the traction reduces to zero linearly up to the maximum displacement jump.

Following Camacho and Ortiz (1996) and Ortiz and Pandolfi (1999), in for-
mulating the cohesive law, a non-dimensional effective displacement jump is
defined by

l5!Sun

dn
D2

+b2Sut

dt
D2

(6)

where, un and ut are the actual normal and tangential displacement jumps at the
interface estimated by the finite element, analysis, anddn anddt are critical values
at which interface failure takes place.
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Fig. 3. Schematics of microcracking at grain boundaries using the irreversible interface cohesive law.
Evolution of the traction with loading and unloading is also shown.

For a triangularT-l law, see Fig. 3, loading and unloading in the range 0#l#lcr

are given by

Tn5
un

dn

Tmax

lcr

; Tt5a
ut

dt

Tmax

lcr

(7)

Tmax is the maximum normal traction that the interface can develop before failure

and a=bSdn

dt
D is the parameter coupling the normal and shear tractions, such that

b2=GIIc/GIc.
It is assumed here that the traction can increase reversible and linearly to its
maximum valueT=Tmax whenl=lcr. Beyondlcr, the traction reduces to zero up to
l=1.0 and any unloading takes place irreversibly, see Camacho and Ortiz (1996)
and Ortiz and Pandolfi (1999).

For loading in the rangelcr,l#1;

Tn5Tmax

un

dn

1−l
l(1−lcr)

; Tt5aTmax

ut

dt

1−l
l(1−lcr)

. (8)
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Due to irreversibility, loading/unloading in the range 0#l#l*, wherel*.lcr is the
last value ofl from where unloading took place, is given by

Tn5
un

dn

Tmax

l∗ ; Tt5a
ut

dt

Tmax

l∗ (9)

For loading in the rangel*,l#1;

Tn5Tmax

un

dn

1−l
l(1−l∗)

; Tt5aTmax

ut

dt

1−l
l(1−l∗)

. (10)

Once the effective displacement jump reaches or exceeds a value of 1, the interface
element is assumed to have failed and microcracking is said to have initiated at
that grain boundary. Subsequent failure of neighboring interface elements leads to
microcrack propagation and coalescence. In our graphic representation, failed inter-
face elements are represented with thicker lines.

From the values of fracture toughnessKIC, or equivalentlyGIC, assuming plane
strain, and the maximum interface stress, the critical interface displacement jump is
computed by equating the area under theT-d diagram toGIC, namely,

GIC5
1
2
dnTmax (11)

The slope of the curve in Fig. 3 going from 0 tolcr, s=Tmax/(lcrd), is selected
such that the wave speed in the material with interfaces is the same as the ones in
the material without interfaces during reversible loading.

In contrast with the standard explicit schemes, where the time steps are limited
by stability in order to ensure that waves do not propagate through the mesh faster
than the material wave speed, this algorithm considers an additional limitation in
the time step controlled by the cohesive law.

As it can be seen in Fig. 3, the cohesive interface law consists only of two parts
0#l,lcr andlcr#l#1. The time step has to be such that the evolution ofl can
follow the cohesive law curve in several time steps. This is accomplished by taking

Dtcohesive5
Dtcontinuum·F

maxizi

(12)

wherexi is defined by each interface element,i as:

zi55
Dl
lcr

if 0#l,lcr

Dl
1−lcr

if lcr#l,1

(13)

In the above equationDl=l̂n+12ln where l̂n+1 is the displacement jump predictor
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for interfacei. F is the inverse of the number of steps required forl to go from 0
to lcr.

In this way, the overall time step is taken as

Dt5min(Dtcohesive,Dtcontinuum) (14)

where Dtcontinuum is the stable time step calculated from the maximum six-noded
element, frequency in the meshwmax (Espinosa et al., 1998a).

One of the limitations of the contact/interface algorithm is that it is very suscep-
tible to instabilities if the time step changes suddenly. As mentioned before, the time
step is controlled by the variation in time of the interface element displacement
jump, l̇, which can change suddenly from one step to another for more than one
order of magnitude depending on the contact conditions of the interface element.
This may lead to numerical instabilities unless precautions are taken. In order to
avoid these instabilities, each element (six-noded and interface elements) is advanced
in time with theDt computed by Eq. (14), while the contact algorithm is advanced
in time with Dtcontinnum.

Considering that the multi-body contact algorithm is one of the most, time con-
suming parts of the micromechanical model, it can be said that this subcycling algor-
ithm not only solves stability problems, but also can provide some speed up in
the calculation.

2.3. Grain discretization

The micromechanical model is based on a plane strain analysis of a polycrystalline
material which is described with a multi-body finite element mesh. Each grain is
individually represented by a mesh with six-noded triangular finite elements, gener-
ated using Delaunay triangulations and four-noded interface elements inserted at the
grain boundary.

A real ceramic microstructure is digitized to represent the grain morphology as
shown in Fig. 1. After digitalization, the grain boundaries are represented by poly-
gons and a mesh is generated inside each polygon using triangular elements and
interface elements along the edges in such a way that the nodes belonging to the
interface elements are the nodes of the triangular elements on the polygon bound-
aries.

Each grain is described by its principal material directions relative to the global
co-ordinates. The distribution of the principal material directions on the overall
microstructure can be seen in Fig. 2. The angle between local and global co-ordinates
for each grain is obtained by means of a random number generation routine.

2.4. Summary of the explicit integration algorithm

An explicit central-difference integration algorithm is being used to integrate the
system of spatially discretized ordinary differential equations in time. The algorithm,
accounting for acceleration corrections due to contact, is summarized in Table 1. As
in any initial boundary value problem, initial displacements and velocitiesu0 andv0
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Table 1
Explicit integration algorithm
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are required. Initial accelerationsa0 are calculated from initial applied forcesfext
0 and

initial internal forcesf int
0 .

At each time stepn, the nodal accelerations must first be corrected for any time-
dependent changes in the traction boundary conditions. Then, a displacement predic-
tor at timen+1 is computed using the corrected acceleration and the displacements
and velocities at time stepn. Modified accelerations at timen, Dan, are computed
based on the corrected acceleration and changes in accelerations resulting from sur-
face contact determined from the displacement predictor atn+1. Updated displace-
ments atn+1 are used in the update of stresses and the computation of internal forces.
In contrast with the original algorithm presented by Espinosa et al. (1998a), the
correction of the accelerations is multiplied by a different time step (Dtcontact)
described in Section 2.2. Lastly, accelerations and velocities at timen+1 are obtained
completing the time integration scheme. Corrected accelerations at step (3) need to
be computed. These correction terms arise from changes in the applied boundary
traction due to changes in the applied external forces, (Espinosa et al., 1992). If such
corrections are not incorporated in the numerical implementation, spurious oscil-
lations are introduced with magnitudes proportional to the traction change.

3. Case study: pressure–shear experiment

Plate impact experiments offer unique capabilities for the characterization of
advanced materials under dynamic loading conditions. These experiments allow high
stresses, high pressures, high strain rates and finite deformations to be generated
under well characterized conditions. They all rely on the generation of one-dimen-
sional waves in the central region of the specimen in order to allow a clear interpret-
ation of the experimental results and the mathematical modeling of the material
behavior. Compression–shear loading is attained by inclining the flyer, specimen,
and target plates with respect to the axis of the projectile (Clifton and Klopp, 1985).
By varying the angle of inclination, a variety of loading states may be achieved.
Pressure shear recovery experiments offer several advantages over other experi-
mental techniques in the study of damage and inelasticity in advanced materials
(Espinosa et al., 2000a). The stress amplitudes and deformation rates obtained in
these experiments allow the identification of damage and material instabilities.

Furthermore, the information gathered from these experiments can be substantially
increased by correlation of real-time velocity profiles and microstructural features
associated with mechanisms of inelasticity and damage. Ceramics are so susceptible
to fragmentation that they can pulverize upon unloading if enough damage and elastic
energy is stored within the material in the loading phase. This makes the recovery
of samples very difficult in experiments. Our goal is to simulate the pressure–shear
experiment, performed by Espinosa et al. (2000a) to demonstrate the onset of various
failure mechanisms and their evolution.
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3.1. Boundary and initial conditions

Fig. 4 shows the pressure–shear configuration. The specimen is a thin wafer of
540 µm, sandwiched between two anvil plates, i.e. the flyer and the target. In this
configuration, the flyer hits the specimen, which is attached to the target, with an
initial velocity V0=148 m/s. The angle of inclination in this case isg=18°. The impac-
tor is glued to the front end of a fiberglass tube with the impact plane skewed from
the axis of the tube at the desired angle.

At impact, plane compression waves and shear waves are produced in both the
impactor and the target. Since the shear wave velocity is approximately half the
longitudinal wave velocity, a thin film with very low shear resistance needs to be
added to the flyer plate such that the arrival of the unloading shear wave to the
impact surface precedes the arrival of the unloading longitudinal wave generated at
the back surface of the second flyer plate. Certainly, the thickness of the anvil or
target plate must be selected such that the arrival of longitudinal unloading to the
impactor surface, from the anvil back surface, does not prevent the transfer of the
main pulses to the target plate.

Fig. 4. Schematics of the experimental configuration and the representative volume element.
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For a microstructural analysis of the pressure–shear configuration (as shown in
Fig. 4), a representative volume element is selected. The flyer–specimen interface is
located aty=H, while the specimen–target interface is aty=0. Assuming that the
computational cell is repeated in thex-direction, the following periodic boundary
conditions are applied

u(0,y,t)5u(L,y,t) v(0,y,t)5v(L,y,t) a(0,y,t)5a(L,y,t) (15)

whereu, v anda are the displacement, velocity and acceleration vector fields. Grains
with nodes atx=0 have the same principal material directions as the grain with nodes
at x=L in order to ensure periodicity. In addition, the condition of uniformu, v and
a at the flyer–specimen and specimen–target interfaces is imposed by averaging the
quantities at the top and bottom nodes of the specimen. Furthermore, assuming that
the target and flyer plates remain elastic throughout the deformation process, the
computational effort can be minimized by replacing the flyer and anvil plates with
viscous boundary conditions based on one dimensional elastic wave theory (Espinosa
et al., 1992; Zhou et al., 1994). This implies the assumption that the flyer and anvil
plates do not have any relative sliding. Conservation of momentum and continuity
of velocities and tractions lead to the following equations for tractionst1 and t2 at,
y=H andy=0.

t1(x,H,t)52(rcs)f[v1(x,H,t)2v0
1] (16)

t2(x,H,t)52(rcl)f[v2(x,H,t)2v0
2] (17)

t1(x,0,t)52(rcs)tv1(x,0,t) (18)

t2(x,0,t)52(rcl)tv2(x,0,t) (19)

where ()f and ()t denote flyer and target quantities,cl and cs are longitudinal and
shear wave speeds,r is the specific material density,v1 and v2 are in-plane and
normal velocities andv0

1 and v0
2 are the in-plane and normal velocities of the flyer

plate. The flyer shear and normal velocities are obtained from the projectile velocity,
V0 and pressure shear angleg as

v0
15V0sin g v0

25V0cosg (20)

The initial in-plane and normal velocities at the specimen–target interface are zero
and at the flyer–specimen interface they are given by

v1(x,H,0)5
(rcs)f

(rcs)s+(rcs)f

v0
1 (21)

v2(x,H,0)5
(rcl)f

(rcl)s+(rcl)f

v0
2 (22)

in which (rcs)s and (rcl)s are the shear and longitudinal impedances of the specimen.
The material properties of the ceramic specimen (Al2O3/SiC nanocomposite),

longitudinal and shear impedances of the steel flyer and target plates are given in
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Table 2. In tile case of the ceramic, the nonzero components are denoted by only
two indices (i.e.C1111=C11, C2222=C22, C1122=C12, C1212=C44, etc). It should be pointed
out that alumina is a trigonal system with only three planes of symmetry with normals
that do not coincide with the local axes of co-ordinates except for axis 1. In terms
of the elastic constitutive matrixĈIJ, this means thatC14=2C24=C45Þ0 (Hearmon,
1956). In order to address this problem the authors assumed the behavior of the
alumina to be transversely isotropic (or hexagonal) makingC14=0. It is demonstrated
in Section 4.5.1 that the effect of using this approximation is not significant in the
response of the microstructure.

4. Results and discussion

We shall focus on the study of the variation of geometrical and physical parameters
that characterize the ceramic microstructure and their effect on the microstructure
response.

In principle, the response of the piece of ceramic considered may depend on sev-

Table 2
Material Properties

Specimen Properties Al2O3/Sic
Elastic:
Young’s ModulusE 384.6 GPa
Poisson’s ration 0.237
Densityr 4000 kg/m3

Longitudinal WavespreadCl 10 560 m/s
Shear WavespreadCs 6240 m/s
Longitudinal Impedance (rCl)s 42.24

GPa
mm/µsec

Shear Impedance (rCs)s 24.96
GPa

mm/µsec

Anisotropic Elastic Constant Hearmon (1956)
C11=C22 465 GPa
C12 124 GPa
C13=C23 117 GPa
C33 563 GPa

C44=
1
2
(C112C12)

C55=C66 233 GPa
Flyer/Target Properties Hampden Steel
Longitudinal ImpedancerCl 47.62

GPa
mm/µsec

Shear ImpedancerCs 25.46
GPa

mm/µsec
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eral factors such as grain anisotropy, interfacial strength, representative compu-
tational cell size, shape and size of the grains, etc.

In order to validate our model, microstructure response should not depend on
numerical parameters such as element, size, interface element length, etc. There are
also some other factors that need to be properly calibrated such as the slope of the
cohesive laws, andF, which have been described in Section 2.2. All these parameters
have been successfully obtained and tested but not presented in this paper.

The first result presented in this section describes microcrack evolution and co-
alescence in terms of crack pattern and crack density. After that, a systematic and
parametric study of the effect of factors that control the microstructure response
is reported.

4.1. Microcrack evolution and material pulverization

The representative volume element presented in Figs. 1 and 4 under the dynamic
conditions described in Section 3.1 is simulated using the material parameters given
in Table 2, while the interfacial strength parameters are defined asKIC=4 MPa·m1/2

and Tmax=1 GPa. Other interface parameters areb=1, a=1 anddt=dn=0.01418µm.
Fig. 5 shows the evolution of the crack pattern along the whole microstructure.

As the wave front, advances, crack nucleation and growth occur up to the moment
when the wave reaches the bottom face. As described earlier, once the effective
displacement jump exceeds a value of 1, the interface elements are assumed to have
failed and a microcrack is said to have initiated at that grain boundary. As all grain
boundaries are embedded with interface elements, the lines shown in Fig. 5 indicate
the boundary of the grains that have failed during loading. Subsequent failure of
neighboring interface elements leads to microcrack propagation and coalescence. As
it can be observed in Fig. 5, the majority of microcracking occurs at the initial
loading phase, from 0 to 100 nanoseconds. The saturation of microcracking can be
noticed in the subsequent loading phase, from 100 to 500 nanoseconds during which
residual stresses start building up in the specimen.

Although crack patterns provide understanding of the process of microfracture
inside the ceramic, the use of stereology provides more insight of the different dam-
age mechanisms.

Quantitative stereology attempts to characterize numerically geometrical aspects
of the microstructure of interest. Underwood (1970), presented a technique to estra-
polate from 2-D crack lines to 3-D complex crack surfaces. The technique provides
an estimate of microcrack surface area per unit volume,Sv. By equating the total
crack surface area per unit volume,Sv, to twice the average value of the number of
intersections of a set of test, lines of unit, lengthPL, an estimate ofSv can be obtained.
PL is the number of intersections/(Number of lines×Length of each
line/Magnification). For anisotropic microstructures, the number of intersections of
a set of test lines, with the boundaries of microcracks, depends on the angular orien-
tation of the test lines in the plane. Thus, in order to obtain a representative average
value of the intersection count, it is important to perform the measurements on differ-
ent angular orientations in the cross-section under interrogation. The dependence of
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Fig. 5. Crack pattern evolution for the first 100 nanoseconds and material pulverization after 500 nanose-
conds.

the number of intersections per unit length with the angle of the test lines can be
used to characterize the degree of microcracking anisotropy.

For the case of our numerical simulations, the microcrack surface area per unit
volume is directly defined as

Sv(t)5
total crack length at timet

Area
(23)

After obtainingSv(t), Ṡv(t) can be calculated by numerical differentiation without
any difficulty. Fig. 6 (left) shows the evolution ofSv(t) and Ṡv(t) from the initial
time, when the specimen starts loading, up to 500 nanoseconds.
Moreover, the angular crack density distributionSv(q,t) can be calculated, and the
rosette shown in the same figure can be constructed. Each pointx, y in this rosette
is defined as

x5Sv(q6Dq)·cos(q) (24)
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Fig. 6. Sv(t), Ṡv(T) (left) and Sv(q,tf) (rosette, right) for a microstructure of areaA=540×190.3µm2.

y5Sv(q6Dq)·sin(q) (25)

In other words, the distance from each point to the origin is the crack density for
all the cracks with an angular orientation,q, such thatq2Dq#q,q+Dq. The degree
of discretization is defined asDq=2p/N, whereN is the number of intervals forq.
For example, Fig. 6 (right) is the rosette constructed with a discretizationN=10. The
reason why a very low discretization factor has been chosen is the small number of
potential angles where the crack can occur in our microstructure. Even though these
figures show the variation ofq from 0 to 2p, the angle is computed from 0 top,
and the densitySv(q+p) is assumed equal to the densitySv(q). The relationship
betweenSv(t) andSv(q,t) is: Sv(t)=e π

0Sv(q,t) dq.
As described earlier and observed in experiments, ceramics are so susceptible to

fragmentation that they can pulverize upon unloading if enough damage and elastic
energy is stored within the material in the loading phase. This makes the recovery
of samples very difficult in experiments. The possibility of material pulverization in
unloading is investigated with the microstructural model.

Unloading is simulated by removing the traction boundary conditions on the top
and bottom surface of the specimen at timet=500 nsec. The condition of uniform
u, v anda at the top and bottom nodes of the specimen is also removed while the
periodic boundary conditions, at,x=0 andx=L are retained after unloading. Fig. 5
shows the evolution of fragmentation upon unloading. It is observed that crack coal-
esence occurs leading to the formation of fine fragments. If the periodicity of the
RVE is taken into account, a clear picture of material pulverization is inferred from
these calculations. The final fragment size correlates with the interface properties as
it will be shown later.

4.2. Effect of representative volume element (RVE) size

As discussed in Section 3.1, the representative volume element is selected such
that its height is equal to the thickness of the ceramic specimen, 540µm (See Fig.
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4). However, nothing has been said about the width of the RVE. In order to study
the effect of varying this width, a real microstructure is digitized and the finite
element mesh is generated for each one of the grains, then four different RVEs are
taken from the original RVE keeping the same shape and size of the grains, but
varying the original width (190.3µm as given in the original photography) by a
factor of 1/2, 3/4, 3/2 and 2.

In the same analysis, we have included an RVE of the same size and number of
grains as the original, except for the fact that the shape of the grains is different.

Fig. 7 shows the crack area, per unit volumeSv (or crack length per unit area, for
2-D analysis) as a function of time for each one of these microstructures. Even
though the response seems to vary with the RVE width, there is no clear trend as

Fig. 7. Effect, of the RVE size: (a) Original microstructure and crack pattern for microstructure (A) and
microstructure (B) which have the same original width (b)Sv(t) for each RVE including the original
microstructure (A) and microstructure (B).
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the width is increased. A maximum variation of about 15% is observed in the
maximum value ofSv. In fact, the variation can be considered to be caused by small
changes of the grain shape, made “ad-hoc”, to preserve the grain periodicity at
the boundaries.

The variation ofSv for the case with 100% of the original RVE but different grain
shape is included in the same figure, showing a variation of the same order as the
one resulting from variations in the RVE width. These results need to be interpreted
with caution in view that larger variations may result, for other parameters of the
cohesive law.

The crack patterns of the two microstructures with the original RVE size are also
shown in Fig. 7. The crack pattern for the microstructures with different RVE width
can be seen in Fig. 8. The visual effect in this case is stronger than the evolution
of crack density where a similarity in crack patterns can be readily appreciated.

Subsequent analyses included in this paper will be presented using the original
microstructure, unless otherwise specified.

4.3. Effect of Tmax and KIC

A parametric study of the variation of the two main interface parameters,KIC and
Tmax, is carried out. These parameters are the material toughness of the ceramic,KIC,
and the maximum interface strength,Tmax utilized in Eqs. (7)–(11).

Six cases were studied for two different values ofKIC (1.7 and 4 MPa·m1/2) and
three different values ofTmax (1, 5 and 10 GPa) combined as it is shown in Table
3. In all these casesd=dn=dt, anda=1.

Fig. 9 shows the crack pattern for each one of these six cases. In these sequences
the different extent of crack nucleation and crack propagation can be appreciated.
For the case withKIC=1.7 MPa·m1/2 and Tmax=1 GPa, most interface elements are

Fig. 8. Crack pattern for microstructures with different RVE sizes.
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Table 3
Interface parameters used for the study of the effect ofTmax and KIC

KIC (MPa·m1/2) GI (N/m) d (µm) for Tmax=1 d (µm) for Tmax=5 d (µm) for Tmax=10
GPa GPa GPa

1.7 7.092 0.01418 0.002837 0.001418
4 39.26 0.07853 0.015706 0.007853

broken as the wave advances. On the contrary, with the sameKIC andTmax=10 GPa,
a dilute distribution of cracks is achieved. It should be pointed out that 10 GPa
represents a cohesive strength close to the theoretical valueE/20. In other words,
grain boundaries without impurities and good lattice matching.

The case withKIC=4 MPa·m1/2 andTmax=1 GPa presents a different crack pattern
as all the other cases. The cases withKIC=4 MPa·m1/2 and higher values of the
maximum strength,Tmax experience interface element breakage only in the corner
of the voids, showing the effect of stress concentration and void collapse.

Fig. 10 shows the crack length per unit area,Sv(t), as a function of time for each
one of these six cases. The rosetteSv(q,tf) for tf=500 nsec is also shown in the same
figure. The evolution of the crack density is more evident for the cases with weak
interfaces.

Fig. 11 shows the pulverization pattern for each one of these cases at 400 nanose-
conds after the unloading. As mentioned before, these ceramics are so susceptible
to fragmentation that they represent the most difficult problems in wave propagation
investigation with specimen recovery. These calculations demonstrated that the press-
ure–shear configuration presented by Espinosa et al. (2000a), would be more attract-
ive for investigating other materials, with higher toughness, in which damage, plas-
ticity, or phase transformation induced by lateral wave release are minimized.

The velocity profiles at the bottom face of the specimen have also been analyzed.
Fig. 12(a) shows the normal velocity for all the six cases. The three curves on the left
correspond to the runs withKIC=1.7 MPa·m1/2 and the ones on the right correspond to
the runs withKIC=4 MPa·m1/2. An initial jump in normal velocity, followed by the
reverberation of waves within the specimen is observed. It can be appreciated that
the particle velocity rate changes asTmax is varied. The higher the value ofTmax, the
higher the velocity rate up to a steady state at a maximum normal velocity of about
70 m/s. The cases withKIC=4 MPa·m1/2 and Tmax=5 GPa and 10 GPa have similar
velocity histories. The same effect is observed in the transverse velocity (Fig. 12(b)).
The elastic prediction of the normal and transverse velocities, which are included in
the figures, are given by

v1(x,0,500nsec)5
2(rcs)s(rcs)f

[(rcs)s+(rcs)f]2V0sin g (26)

v2(x,0,500nsec)5
2(rcl)s(rcl)f

[(rcl)s+(rcl)f]2V0cosg (27)
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Fig. 9. Crack pattern for different values of material toughness and interfacial strength at 100 nanose-
conds.

Average material moduli are used in these elastic predictions.
The transverse velocity has a rising slope that, is clearly dependent onTmax. This

is clue to the rate of damage as inferred from theSv plots. Despite the fact that
significant microcracking occurs for the caseKIC=1.7 MPa√m andTmax=1 GPa, it is
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Fig. 10. Sv(t) (left) and Sv(q,tf) (rosette, right) for different values of material toughness and interfa-
cial strength.

seen that the maximum transverse velocity reaches and exceeds the elastic prediction.
This feature is in contrast with the experimentally measured transverse velocity his-
tory (Espinosa et al., 2000b), in which the free surface transverse velocity is about
half the elastic prediction and decays progressively after the attainment of a peak
value. Two effects can contribute to the experimentally observed decay in transverse
velocity: they are: i) the possibility of sliding at the flyer–specimen and specimen–
target interfaces, ii) transgranular cracking leading to a favorable crack pattern. None
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Fig. 11. Pulverization pattern for different values ofKIC andTmax.

of these features were accounted for in the present simulations. Because of their
complexity, they will be addressed in future work.

Another feature to be noted is the fact that both the maximum transverse and
normal velocities exceed the elastic prediction. This can be explained by the assump-
tion of a 2-D microstructure and therefore not a fully random microstructure. The
latest is assumed in the calculation of polycrystalline average moduli which were
used in the calculation of elastic wave velocities.
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Fig. 12. (a) Normal velocity history for different values ofKIC andTmax (b) Transverse velocity history
for different values ofKIC and Tmax.

4.4. Effect of initial defects

As observed in Fig. 9, the case with the strongest interfaceKIC=4 MPa·m1/2 and
Tmax=5 GPa shows a very small crack density compared with the cases with weaker
interfaces. In this case, the microcracks could only nucleate on the voids and propa-
gate into the microstructure. Hence, this case is very suitable for studying the effect
of initial defects. Physically, initial defects are generated during material sintering
because of elastic and thermal grain anisotropy, see Tvergaard and Hutchinson
(1988).

A new simulation has been carried out where a uniform distribution of initial



52 P.D. Zavattieri et al. / Journal of the Mechanics and Physics of Solids 49 (2001) 27–68

defects has been included with size<1 µm located at triple points. Fig. 13 shows
the crack length per unit area, comparing the same case with and without initial
defects. The initial crack length per unit area for the first case, which was not
included in the evolution ofSv(t), is Sv(0)=0.005452/µm. The crack patterns at time
0 and 500 nsec are shown in the same figure. This demonstrates the fact that a
microstructure with an initial distribution of flaws, which can be a more realistic
case to analyze, is more susceptible to microfracture than an “ideal” microstructure
without any defects.

4.5. Effect of grain elastic anisotropy

Several investigations have been reported about the effect of crystal anisotropy
on polycrystalline materials response.

Ortiz and Suresh (1993) studied the residual stress generated in polycrystalline
ceramics, during cooling from the fabrication temperature, finding that the stress
distribution is affected by elastic anisotropy.

Mullen et al. (1997) developed a finite element-based Monte Carlo which can be
used to predict scatter in the nominal elastic constants of thin films. These moduli
have been found to be strongly dependent on the anisotropy level of the material.

Tvergaard and Hutchinson (1988) analyzed the effect of crystal anisotropy on the
formation of grain boundary microcracks by considering a planar array of hexagonal
grains as a model of polycrystalline ceramics. Stress singularities at triple points and

Fig. 13. Crack length per unit area and crack patterns for a microstructure with strong interfaces, with
and without initial defects.
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grain-boundary defects were also examined. The stress at those points can increase
according to the grain elastic anisotropy, which results in a smaller critical grain
size for microcracking.

Grah et al. (1996) conducted computer simulations in polycrystalline specimen
using a spring-network model for arbitrary in-plane crystal anisotropy. From those
simulations, intergranular crack paths were obtained.

In this section the stochastic effect of grain elastic: anisotropy and its impact on
the fracture behavior of the ceramic at the microlevel is studied.

Four identical microstructures are considered for this analysis. The only difference
between them is that the principal material directions are generated randomly in three
of them, while only isotropic elasticity, average values for the polycrystalline
material, is considered for the fourth case.

This parametric study allows us to see if the fact that each grain has random
principal material directions presents significant variations in the RVE response.
Also, it addresses the question of what is the effect of this misorientation on inter-
granular crack growth regardless of the interfacial strength.

The crack length per unit areaSv(t), for four cases, is shown in Fig. 14. A clear
tendency of higher values ofSv, for the anisotropic cases can be appreciated. Even
if the crack patterns look very similar, this is a case where a stereological study is
more useful tohighlight the real differences. Not only variations in maximumSv at
500 nsec are observed, but also a higher rate of crack growth, in the first 100 nsec,
is manifested in the case of RVEs with elastic anisotropic grains.

Fig. 15 provides even more information on microcrack evolution. At triple points,
the stress concentration effect is more important where the grains are described by

Fig. 14. Effect of grain anisotropy in the crack area per unit volume. Higher stress concentrations at
triple points are observed in the case of RVES with elastic anisotropy.
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Fig. 15. Effect of grain anisotropy: (a) Crack pattern showing the distribution of the effective Cauchy
stressseff for the three cases with grain elastic anisotropy and the case with elastic isotropy. (b) Zoom
showing crack pattern and grain orientations.
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different principal material directions. For the isotropic case, the stress concentration
effect is minimum. Future studies will focus on the effect of residual stresses, intro-
duced during cooling from the sintering temperature, in the mechanical response
of ceramics.

4.5.1. Effect of considering the ceramic to be transversely isotropic
As it was mentioned in a previous section, alumina is known to be a trigonal

atomic system making the assumption of plane strain inappropriate if the local axes
2 or 3 coincide with the global axisz. This implies only two choices: 1) considering
only the case where 1;z similar as what was considered in Ortiz and Suresh (1993)
and Tvergaard and Hutchinson (1988); 2) approximate the ceramic to be transversely
isotropic,C14=0, and all three cases 1;z, 2;z, 3;z, randomly chosen, as it is con-
sidered in this paper. Fig. 16 shows the comparison of the crack density between
the case consideringC14=0 using the three planes of symmetry and the case with
C14=101 GPa (Hearmon, 1956) but using only 1;z. The isotropic case has been

Fig. 16. Effect of considering the ceramic as an orthotropic system instead of trigonal in the evolution
of the crack density.
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also included in the figure for comparison purposes. The simulations show that both
anisotropic cases lead to similar values ofSv and Ṡv.

4.6. Effect of grain size

In addition, an analysis comparing a microstructure with smaller grain size has
been carried out. In all the previous simulations the averaged grain size of the micro-
structure was 22µm. A second microstructure, with an average grain size of 11µm,
was used in simulations under the same conditions in order to study the evolution
of crack density. Due to the significant number of grains and the CPU time that the
multi-body contact algorithm consumes, the analysis has been carried out only up
to 150 nanoseconds.

Fig. 17(a) shows the crack length per unit area, for both cases. It can be observed
that the curve showing the evolution ofSv is significantly lower for the case with
smaller grains. These results are consistent with the findings of Ortiz and Suresh
(1993), where numerical simulations of intergranular fracture during cooling from
the fabrication temperature have been carried out using an interface cohesive model.
A similar behavior was also observed experimentally on creep deformation of alum-
ina–silicon carbide composite by Lin et al. (1996). Fig. 17(b) shows the original
microstructure together with the crack pattern at 150 nanoseconds.

A more extensive analysis needs to be done in order to study the behavior of
ceramics with different grain sizes and examine its effects under different loading
conditions. The aim of the study presented in this paper is to provide a tool that
allows those kinds of investigations. Future work will address the modeling of micro-
structures with large distributions of grain sizes and shapes including texture.

4.7. Effect of stochastic distribution of interface properties

The interfaces between different material phases are important in determining
many bulk properties. One of the simplest interface types is the boundary between
two crystals of the same material. If two crystals of exactly the same orientation are
brought together, they fit perfectly. However, if the crystals are slightly tilted and
brought back together, there is a disregistry at the interface, which is equivalent to
insertion of a row of dislocations. The number of dislocations per unit length and
the energy of the boundary increase as the angle of tilt increases. If instead of being
tilted, the two grains are rotated, the result is a grid of screw locations that are more
complex to represent diagrammatically but are basically similar to the tilt boundary.
A combined tilt and rotation corresponds to a complex combination of edge and
screw dislocations. There is a well-known model that characterizes the structural
order at grain boundaries through a parameter that measures the reciprocal density
of coincident lattice sites (S), the so-called coincident-site lattice model (CSL)
(Bollmann, 1970). Low values ofS correspond to a high density of coincident lattice
sites. Atomistic computations, (Tasker and Duffy, 1983; Wolf, 1984), reveal that
special low energy interfaces are found forS,29. It was observed that there is a
tendency for boundaries withS,29 to be resistant, to cracking and those withS.29
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Fig. 17. Effect of grain size. (a) Crack length per unit area for the cases with coarse and fine grains.
(b) Original microstructure and crack patterns at 500 nsec.
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to be susceptible to cracking. Boundaries withS.29 are referred to as random
boundaries. Fig. 18(a) shows a high resolution transmission electron microscope
(HRTEM) picture of a high-angle alumina–alumina interface (Espinosa, 1992).

Several investigators have studied the interfacial properties of Al2O3/SiC by trans-
mission electron microscopy (TEM), (Jiao et al., 1997; Luo and Stevens, 1997; Ster-
nitzke, 1997). They have found that the magnitude of the interfacial fracture energy
between SiC and alumina is over twice the grain boundary fracture energy, and grain
boundaries are strengthened by SiC nanoparticles due to the stronger interfaces.

Not only the grain misorientation affects the interfacial strength, but also the pres-
ence of glassy phase and glass pockets is an important factor to be taken into account
(Simpson and Carter, 1990). Either from impurities present in the powder, sintering
aids, and/or contaminants transported through the vapor phase from the hot furnace
or container walls to the material being fired, a second phase is sometimes formed
at the grain boundaries with an amorphous structure. High resolution electron
microscopy micrographs were taken by Espinosa (1992), at the interfaces of a glass
pocket (see Fig. 18(b)).

The random distribution of glass pockets, glassy phases, SiC nanoparticles, defects
and other impurities leads to the consideration of a statistical variation in the interfa-
cial strength dependent on the grain misorientation. Data on grain boundary tough-
ness as a function of coincident lattice sites are very limited and incomplete in the
literature. For this reason, the stochasticity of the microfracture process with distri-
butions which are independent of the principal material directions, has been analyzed.

4.7.1. Weibull distribution of interface parameters
If a large number of identical samples were to be tested and the strength distri-

bution of a brittle and a ductile solid plotted, they would look different. The strength
distribution curve for ductile solids is very narrow and close to aGaussianor normal
distribution, while that for brittle solids is very broad with a large tail on the hit-
strength side that can be explained by a statistical distribution called theWeibull
distribution, named after the Swedish engineer who first proposed it (Weibull and
Sweden, 1951).

In this analysis, the interfacial strength parameters will be described by aWeibull
distribution. Since only two interface parameters can be varied, two distributions
will be considered: varyingKIC and keepingTmax constant, and vice versa.

The Weibull distribution forKIC and Tmax are:

f(KIC)5
m(KIC)m−1

K0
IC

m expF2SKIC

K0
IC
DmG,KIC.0 (28)

f(Tmax)5
m(Tmax)m−1

T0
max

m expF2STmax

T0
max

DmG,Tmax.0 (29)

WhereK0
IC andT0

max are material constants andm is theWeibull modulus, which
is a measure of the variability of the strength of the material. Generally,m=5-10 for
the case of brittle ceramic samples.
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Fig. 18. (a) HRTEM image of a typical high angle grain boundary. (b) TEM bright field image of a
glass pocket, in alumina.
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The distribution is such that a grain facet will have the same interface element
parameters. In this way there will be onlyNf different interface elements (Nf=number
of facets in the microstructure).

For the case whereKIC varies, the Weibull parameters areK 0
IC=4 Mpa·m1/2 and

Tmax=1 GPa. Two values ofm are taken asm=3.6 (where the Weibull distribution
approximates the normal distribution) andm=10. For the other case,KIC=4 MPa·m1/2

and Tmax=1 GPa.
Since the interface parameters are randomly assigned, two simulations with differ-

ent seeds were carried out for each one of these four distributions. This makes a
total of eight simulations. All the simulations are done with the same microstructure
having the same principal material direction distribution.

Fig. 19 shows the crack length per unit area,Sv, for each pair of the four different
distributions. For comparison purposes, the evolution ofSv for the case with interface
with constantKIC andTmax is shown in the same curve. The overall response for the
cases with the distributionf(KIC), given in Eq. (28), seems to be weaker than the
cases with distributionf(Tmax). The weakest case presents a 12% increment in the
crack density with respect to the case without interface parameter variation, while
the strongest case presents a 20% decrement.

The crack pattern for each one of these simulations is shown below the curveSv

vs t. Although there is not much difference between crack patterns, a slight difference
in the crack density between the cases withf(KIC) and f(Tmax) can be appreciated.
A statistical analysis has been done for one of the previous cases. The distribution
of Eq. (29) with KIC=4 MPa·m1/2, T0

max=1 GPa andm=10 was utilized in order to
carry out fifteen simulations with different seeds. Fig. 20(a) shows the crack length
per unit area for each one of these simulations, while Fig. 20(b) shows the histograms
of Sv(t) for different times. ThemeanvalueSv(t)=(SnSi

v)/n and the standard deviation
DSv(t)=√Sn(Si

v−Sv)/n are also shown in the figure.

4.8. Effect of grain morphology

It is well established that, the grain structure in polycrystalline materials can be
simulated by a Voronoi tessellation. For the two-dimensional case, a plane is divided
into M grain-like tiles corresponding toM nuclei that may be thought as nuclei of
grains. A grain-like tileTi is defined as follows:

Ti5{ x:d(x,Pi),d(x,Pj ) for all iÞj,} (30)

where Pi represents a nucleus andd(x,Pi) denotes the distance betweenPi and x.
Each tile is named a Voronoi cell and represents an individual grain that is meshed
using Delaunay triangulation.

Several investigators have used this technique to represent polycrystalline
materials. Ghosh et al. (1997) utilized Voronoi cells to obtain stereologic information
for the different morphologies. In this approach each cell is an element in the Voronoi
cell finite-element method (VCFEM).

Liu et al. (1998) proposed a method to investigate the damage evolution under
uniaxial tension and reversed shear loading conditions, by means of a combined
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Fig. 19. Effect of the stochastic distribution of interface properties: (a) Crack length per unit area for
each distribution. (b) Crack patterns.

continuum damage and mechanism-based cavitation model, using a Voronoi tessel-
lation to represent the polycrystal microstructure.

Bolander and Saito (1998) used Voronoi tessellations to discretize homogeneous,
isotropic materials prone to fracture such as cement and concrete. The brittle fracture
has been modeled by a rigid-body-spring network.

In order to study the effect of grain morphology, Voronoi tessellations are utilized
to generate different randomly shaped microstructures. A cloud of nucleiPi is ran-
domly generated with a uniform distribution along a specified region of the space
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Fig. 20. Effect of the stochastic distribution of interface properties. These are 15 runs with
To

max=1GPa andm=10.

(i.e., microstructure domain). Neighbor nuclei closer than a given tolerance are
inhibited in order to limit the minimum grain size. After that, a Delaunay mesh
generator is utilized to obtain the Voronoi tessellation associated with the nucleiPi.
We note that the nucleiPi which are located closer to the borders of the area may
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not have sufficient number of neighbors to form a complete polygon. To overcome
this difficulty, special care on the microstructure boundary has to be taken.

As it has been explained in Section 2.3, the mesh is generated using triangular
elements inside each polygon and four-noded interface elements along the edges,
using a multi-body mesh generator. Fig. 21 shows ten microstructures generated
using Voronoi tessellations.

These cases were simulated using the same boundary and initial conditions, as
well as the material parameters used in the simulations presented in Section 4.1. Fig.
22 shows the crack pattern for each one of the ten Voronoi microstructures at 500
nanoseconds. The crack pattern varies from one microstructure to another and there
is no tendency to have the same crack pattern.

Fig. 21. A total of 10 RVE were generated using Voronoi Tessellation and simulated with our
micromechanical model.
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Fig. 22. Microcrack pattern for the 10 randomly generated RVEs.

Fig. 23 shows the crack length per unit area compared with the original case, i.e.,
digitized microstructure. A histogram ofSv at, 500 nanoseconds is shown in the same
figure. The meanSv and the standard deviationDSv are 0.0426/µm and 0.0061/µm,
respectively. The effect of the grain shape on the crack density is significant not
only for the final crack density but also for its growth rate.

5. Concluding remarks

A model was presented for the dynamic finite element analysis of ceramic micro-
structures subjected to multi-axial dynamic loading. The model solves an initial-
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Fig. 23. Crack length per unit area, compared with the original case with the digitized microstructure.

boundary value problem using a multi-body contact model integrated with interface
elements. It simulates microcracking at grain boundaries and subsequent large sliding
opening and closing of the microcracks. Numerical results are shown in terms of
microcrack patterns and evolution of crack density. Simulations with different values
of interface parameters show that the crack density is strongly dependent on tough-
ness,KIC, and maximum traction,Tmax. A parametric study of the representative
volume element size has been also carried out. Results have demonstrated that the
effect of small changes in the grain shape is more important than the effect of the
RVE size. It is shown that grain elastic anisotropy plays an important role in
microfracture. Higher crack densities have been observed when grain elastic ani-
sotropy is considered. In order to account for the fact that all the grain facets are
not the same, due to grain misorientation and the presence of second phases,
impurities and defects, the stochasticity of the microfracture process has been exam-
ined. Depending on which interface parameter is chosen to vary statistically, the
crack density may or may not exceed the crack density if no variation is considered.
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A study of grain size and shape reveals that crack density is strongly dependent on
the grain shape. Decreasing the grain size results in a decrease in crack density per
unit area at equal multiaxial dynamic loading.

The calculations in this article present assumptions that limit the degree of achiev-
able accuracy. For instance, the calculations are 2-D instead of 3-D. As a result, a
true random orientation of grains cannot be achieved in the representative volume
element. In fact, in each grain one of the principal axis must always coincide with
the globalz axis. Moreover, crack interaction is stronger than in the 3-D case and
therefore, the computed rate of crack coalescence may be thought of as an upper
bound.

Another assumption employed in the case study of pressure-shear recovery experi-
ment was the impossibility of sliding between the flyer–specimen and specimen–
target interfaces. A more detailed calculation would require the modeling of anvil
plates and the addition of roughness on the surfaces in contact. Furthermore, contact
between surfaces should be implemented such that, in the presence of sliding, contact
periodicity is achieved.

In the present analyses, the main damage and failure mode investigated was
microcracking. However, in cases of stronger waves, visco–plasticity and twinning
can be expected to become significant. Our model can account for visco–plasticity
but further developments are required to model twinning. In this respect, continuum
models of the type proposed by Staroselsky and Anand (1998) or the use of cohesive
laws based on displacement jumps, e.g., law III in Espinosa et al. (2000b), seem
promising approaches. Nonetheless, the physical modeling of coupled plasticity,
twinning and microcracking continues to be challenging. In fact, it is known that
twinning and/or dislocation pile ups are the precursors to microcrack initiation. To
this picture it is necessary to add the stochasticity in grain boundary toughness due
to the presence of thin (10 nanometers or less) glassy phase layers, grain boundaries
with various values of coincident lattice sites, etc.

Future modeling work will attempt to include the features just discussed. The goal
still being the development of models capable of predicting inelasticity in ceramic
materials in a variety of quasi-static and dynamic applications.
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