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ABSTRACT: A 3-D finite deformation anisotropic visco-plasticity model is presented
for fiber composites in total Lagrangian co-ordinates. The plastic potential function is
given by a quadratic function in stresses in the local co-ordinates system of the lamina. The
model is used to derive the anisotropic plastic constitutive relation of a woven composite
made of S-2 glass fibers embedded in polyester resin with approximately 60% by weight of
fibers. The coefficients of the constitutive model are experimentally determined through
off-axis tension tests and out-of-plane shear tests. Off-axis tension tests are carried out by
varying the angle between the fiber orientation and loading direction. The measured
stress-strain curves are used to derive a master effective stress—effective plastic strain
curve, which is described by two power laws. A modified Arcan fixture is used to carry out
pure shear tests to determine the out-of-plane shear coefficient. Compression tests are car-
ried out to establish the material compressive response in the plane of the lamina and along
the fiber direction. The anisotropic plasticity model is integrated into the in-house finite el-
ement code FEAP98. Numerical analyses are carried out for the off-axis tension tests and
compression tests. These analyses show that the model reasonably predicts the constitutive
response of woven GRP composites in confirmation with the experimental data. The model
further incorporates strain rate and temperature dependence on the anisotropic plastic flow
constitutive law. Ballistic penetration simulations are carried out using the integrated code.
The velocity at the back surface of the composite target, obtained by analyses, is compared
with the data measured experimentally using interferometry. Insight into the failure pro-
cess is obtained through analysis of different energy dissipation mechanisms.

INTRODUCTION

IBER REINFORCED PLASTIC (FRP) composite materials, especially the glass fi-
ber reinforced plastic (GRP) composites, are potential materials for many ap-
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plications. Of special interest is their use in some crucial applications such as de-
sign of weight efficient aircrafts, submarines and armor vehicles. FRP materials in
these applications are subjected to very large deformation at high strain rate lead-
ing to failure in various modes, (e.g., matrix cracking, delamination, fiber-matrix
debonding, micro-buckling, fiber breakage, etc.). Comprehensive reviews on var-
ious failure modes in FRP materials under impact loading and influence of constit-
uent materials, (viz., matrix, fiber and interphase) are given in Cantwell et al. [1]
and Abrate [2,3]. During the on-going research of which the present work is a part,
Espinosa et al. [4] have studied the penetration behavior of woven GRP compos-
ite, made of S-2 glass fibers embedded in a polyester resin matrix with approxi-
mately 60% fiber by volume, at normal impact velocities of 180-200 m/s. As
shown in Figure 1, three distinct zones of damage can be observed, (viz.,extensive
delamination and fiber shearing in zone A, tensile fiber failure with large fiber de-
flection in zone B, and lastly fiber microfracture and buckling in zone C). The ve-
locity history recorded at the GRP target plate free surface and conical steel pro-
jectile back surface are representative of the accumulative effect of the materials
response in the presence of damage which will serve as an important validation
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Figure 1. (a) Photograph of woven GRP sample recovered after penetration experiment. (b)
Optical micrograph taken at the boundary between Regions Aand B. Fiber kinking and matrix
cracking are observed in 0° and 90° plies, respectively.
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tool for future finite element modeling. Developing a representative finite element
model to simulate a such complex response of FRP materials to impact loading is
still achallenge. A three-dimensional finite deformation anisotropic visco-plastic
constitutive model is proposed herein as a first step towards the development of
the finite element model.

Numerous models have been proposed in the past to describe the anisotropic
constitutive behavior of FRP materials before and after failure in the presence of
damage. Sun and Chen [5] proposed a quadratic yield function and an associative
flow rule based on Hill’s anisotropic criteria [6] to describe the anisotropic plastic
behavior of composite materials. By determining the constants of the yield func-
tion, they proposed that the anisotropic flow behavior of composite materials for
different ply orientations can be described by a single curve in the effective
stress—effective plastic strain space. Chen et al. [7] have extended the above yield
function to account for the compressibility of the plastic deformation by introduc-
ing a plastic Poisson’s ratio (PPR). They propose to carry out the tests for a particu-
lar material to determine the variation of effective stress with effective plastic
strain under various loading conditions. The constants of the yield function are
then determined so that these curves converge to a master effective stress—effec-
tive plastic strain curve.

O’Donoghue et al. [8] have used Hill’s anisotropic yield function to describe the
plastic flow of composite materials. The dependence of the pressure on the
deviatoric strain components are taken into account by adding the appropriate
terms in the equation of state of the material. Voyiadjis and Thiagarajan [9,10]
have proposed an anisotropic yield surface model for directionally reinforced
composite materials. In their model, the axial and shear strength parameters are
combined through four tuning constants to arrive at a fourth order anisotropic
yield tensor. The yield tensor is easy to implement in any finite element code either
in local co-ordinates of the lamina or in the global co-ordinates through a second
order co-ordinate transformation.

These yield functions provide the means to computationally homogenize the di-
rectional properties of composite materials. They allow a formulation applicable
for such materials in general and amenable for easy implementation in a finite ele-
ment computer program. In contrast, micromechanical models, Aboudi [11],
Paley and Aboudi [12], Stout et al. [13], treat the matrix and fiber materials sepa-
rately and derive the overall constitutive relation of a cell using periodicity and
traction continuity at the boundary of sub-cells. On one hand, homogenized con-
stitutive relations are simple to use in a finite element code but their capability to
simulate extensive damage during impact and penetration remains questionable.
On the other hand, micromechanical cell models can simulate such damage in de-
tail, but they are highly computer intensive, applicable only to unidirectional com-
posite and not viable for modeling some inherent characteristics of FRP materials,
(e.g., waviness, see Hsiao and Daniel [14-16]).
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In light of the above factors, a fully 3-D finite deformation anisotropic
visco-plasticity model is proposed. The model parameters for a woven composite
are determined through off-axis and shear experiments. The model has been inte-
grated with the in-house version of the finite element code FEAP98. The inte-
grated code has been used to analyze the off-axis tension tests and compression
tests. The obtained results are in close agreement with the experimental results.
The integrated code is further used to simulate the ballistic penetration experi-
ments using more advanced feature of FEAP98, which combines the
visco-plasticity model with contact/interface model and mesh adaptivity [17,18].
The visco-plasticity model is used to simulate inelasticity within each individual
lamina accounting for fiber orientation, rate effects, and large deformation effects
including large displacements and rotations of laminae. Interaction between
laminae before and after delamination is analyzed using interface cohesive ele-
ment (see Espinosa et al. [18]). Mesh adaptivity is used to resolve excessive mesh
distortion atregions where there is large deformation. In addition, acomplete anal-
ysis of energy dissipation is used to understand the failure process.

The following sections describe the plasticity model, experimental work, and
results from analyses carried out with the anisotropic visco-plasticity model.

3-D FINITE DEFORMATION ANISOTROPIC PLASTICITY MODEL

Experiments performed on glass fiber composites show that failure occurs at
strains of a few percent. However, the material undergoes very large displacement
and rotation before and after delamination during impact and penetration, see
Espinosa et al. [4]. Therefore, large deformation analyses of fiber composites can
be carried out based on the assumption of large displacements and rotations, but
small strains (about 2-3%) through appropriate finite deformation stress and
strain measures. A three dimensional finite deformation anisotropic plasticity
model is developed in total Lagrangian co-ordinates [19]. As shown in Figure 2,
considering a solid with volume B,, in the reference configuration, and a deforma-
tion process characterized by the mapping x(X,f), a material point initially at X
will be located at x = X + u after deformation, in which u is the displacement vec-
tor. A displacement based finite element formulation is obtained from the weak
form of the momentum balance or dynamic principle of virtual work. The weak
form at time 7 in total Lagrangian co-ordinates, (i.e., referred to the reference con-
figuration), is given by

[ [V,T° +p,(b, —a)]- ndB, =0 (1)

|, T1°:V,haB, —'[Bo r, (b, —a)- hdB, — J'Swt -hdS, =0 )
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Figure 2. Total Lagrangian continuum model.

where T is the first Piola-Kirchhoff stress tensor at time #; b,,, a, and t are the body
force vector, acceleration vector, and boundary traction vector on volume B, and
boundary S, respectively. Virtual displacement field 1 is assumed to be admissi-
ble, and p,, represents the material density per unit volume in the reference config-
uration. The symbol V, denotes the material gradient with respect to the reference
configuration, and *:” is used to denote the inner product between second order
tensors, e.g., A : B = Aj; Bj;, where the summation convention on repeated indices
is implied.

Alternately, the weak form of the momentum balance, in terms of spatial quanti-
ties, is given by

jB"z - V*1dB, —jBa 0,(b, —a) - ndB, —anct-ndsa =0 (3)

in which superscript s stands for the symmetric part of the tensor, T = FT¢ is the
Kirchhoff stress, F is the deformation gradient at time 7, and V is the spatial defor-
mation tensor. As Equation (3) shows, the equation of motion in its weak form
states that the work done by the stresses T over strains V1 equals the work done by
applied body forces, inertia forces, and surface tractions. .

In the absence of body forces, the above equation can be written at time 7 for ex-
plicit integration as,

Ma="f,, —f,, 4)

where M is the lumped mass matrix, a is the global acceleration vector and fe and
f,, are the external and internal force vectors. In order to obtain a uniform mass
distribution in the mesh, the element mass was lumped proportional to the angles
formed by the corner nodes and midnodes, as detailed in Reference [17].
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The constitutive response of the GRP composite is formulated in terms of the
Green-Lagrange strain tensor E and the work conjugate second Piola-Kirchhoff
stress tensor S [19]. The Green Lagrange strain rate tensor at time step ¢ + A, is
given as,

. 1

Ez'j - E[(F}a]:ﬂ\ Jsns (F}aij )] (3)
where F; is the ij components of deformation gradient and At is the incremental
time step. All quantities in the above equation are defined in the global
co-ordinates (X,Y,Z). Since the second Piola Kirchhoff stress tensor and the
Green Lagrange strain tensor are energy conjugate and independent of rigid body
motions, any material description developed for infinitesimal displacement analy-
sis, using engineering stress and strain measures, can be directly extended for large
displacement and rotation but small strains analyses.

Accordingly, the rate form of the elastic constitutive law, assuming a

hyperelastic material, is given by

Si = Ciju Ey (6)
where C is the elastic anisotropic composite material stiffness tensor in the global
co-ordinates, and E¢ is the elastic component of the Green Lagrange strain rate
tensor. As given in Reference [17], the Kirchhoff stress T and second
Piola-Kirchhoff stress S are related through the relation T = FSFT. In the case of
anisotropic composite materials, the elastic constitutive matrix Cx; is defined in
the local co-ordinate system of the lamina (x,,y,,z;). The constitutive matrix Cjy, 18
obtained by the standard transformation law [20] Cyy =Ty Ty Tix Tip Crkrs
where T is the transformation matrix between the global coordinate and the local
coordinate.

The elastic components of the strain rate tensor are obtained from an additive
decomposition of the total strain rate, namely,

Ej =E; - Ef (7)

In the above equation, E,-j-’ is the plastic strain rate which is given by the flow rule
as,

L of
Ef =k 8
§ =hse (8)

Here, fis the plastic flow potential and A is the plastic rate proportionality factor.
The inelastic behavior of the composite is modeled based on the small deformation
yield function, quadratic in stresses, proposed by Hill [5] and later adopted by Sun
and Chen [5], namely,
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2£(S;) = ay St + anSh + a5
+2a,8)18y + 201351533 + 202353352

+ 20448223 i 26?5555-3 + 261665]22 (9)

Experimental observations show that glass fiber composites behave linearly up to
failure if the load is applied in the fiber direction. Hence, for orthogonal fibers ori-
ented along direction 1 and 2, it is assumed that Ef} = E, = 0. The above flow po-
tential then reduces to,

1
f(§;) = '2‘(53?3 + 4y, 835 + assSts + dgsSiy) . (10)

For equal fiber volume fractions in the principal 1 and 2 directions, as4 = ass 1 ob-
tained which further reduces the yield function to,

1
FUS, )= 5[5_33 + au (S5 + 5%) + ag S5 ] (11)

Defining an effective stress as,
S =3f (12)

and using the flow rule given above with the assumption of identical behavior in
tension and compression, the rate of plastic work is obtained from Equations (9) to
(12) as,

WP =S;ED = SE? (13)

The proportionality factor of Equation (8) is given by,
A="x (14)

where E” is the effective plastic strain rate. The effect of strain rate and tempera-
ture is modeled by defining the material strength in terms of an effective stress
which includes temperature and strain rate terms, Viz.,

EP = EP _L if S > g(E”,T) (15)
°| WET) s
b4 s
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g(E?,T)=S§,|1 [T N (16)

m o
in which S is the flow stress at reference plastic strain rate £ and temperature 7,.
T,, is the maximum temperature at which the FRP material loses its strength. S is
the flow stress at current plastic strain rate £” and temperature 7, m and o are the
rate and temperature sensitivity exponents, respectively. The reference flow stress
§y is defined by an experimentally found power law, viz.,

§ EP - Ep A T N
= [7] ,E? = AS,) (17)
in which n is the strain hardening exponent. A summary of the constitutive equa-
tions, in discrete form are given in Table 1.

It should be noted that depending on the matrix material, other functional forms
for the description of inelasticity may be needed. For instance, visco-elastic repre-
sentations would be equally feasible. For the purpose of simulating ballistic pene-
tration of GRP composites, we assume that a visco-plastic description can ade-
quately capture the GRP material response in a macroscopic sense, i.e., ply
inelasticity (matrix cracking, fiber debonding, matrix inelasticity) is represented

Table 1. Summary of constitutive equations in discrete form.

) i
Stiar =CEfoat

. = dy -

Evon =Eton + Efint

of 3EP o =

ED. =ik === =Ef uN
t+At ash-m 28 aSH-At t+AL i+ At
3 % 3 0 28S;, 2855513
Neiar = 5?::1 =55 2866512 0 284453

2855513 284S Sm

§t+m = \13'(1-»&(3;')”::\:

o i T~T. T
s 28]

1
- EP. T
Sy.t+At =( IAN T

- m
= - S
EP . —FEP StHAL

t+At o [g(EﬁM'T)]

f+At
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by the model described in this section, while interply delamination is modeled by
means of cohesive/contact laws.

EXPERIMENTAL DETERMINATION OF THE
VISCO-PLASTICITY MODEL PARAMETERS

The anisotropic yield function given in Equation (11) involves two coefficients
which need to be determined experimentally. Following Sun and Chen [5], the
value of coefficient ag is examined by carrying out off-axis tension tests and de-
riving a master effective stress-effective plastic strain curve. Coefficient ay, is de-
termined by carrying out out-of-plane shear tests with Arcan’s fixture. Compres-
sion tests in the thickness direction are carried out to study the effect of S35 in the
yield function. Compression tests are also performed to examine the tensile
vis-a-vis compressive response in the plane of lamina. The following subsections
describe the off-axis tension tests, compression tests and Arcan’s shear tests car-
ried out to parameterize the visco-plasticity model. Experimental work related to
determination of high strain rate and temperature effects parameters are the sub-
ject of future research work. '

Off-Axis Tension Tests

The off-axis tension tests are carried out to examine the tensile response of the
woven composite in the plane of lamina and derive the in-plane shear coefficient
ag from the test results. Figure 3 shows the schematic of the off-axis test speci-
men. Let S, be the load applied in the plane of the lamina along the uniaxial direc-
tion X which makes an angle 6 with respect to the fiber direction X;. Axes 1,2 and 3
are defined as material principal axes.

The stress components referred to these axes are,

S,, =sin” 08, (18)
S), = — sinB cosbS,

For the case of 2-D plane stress parallel to the X;—X; plane, the plastic potential
function given by Equation (11) reduces to,

f(S;) = agsSth (19)
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Figure 3. Off-axis tensile test specimen.

Substituting the above equation into the effective stress equation, the effective
stress can be derived in terms of the applied stress S, and the fiber direction 6,
namely,

§ = [3ag cos’0 sin’0S, = h(6)S, (20)

where, h(0) = /3agg cos’6 sin’0 is a function of the fiber orientation 6.
The relationship between the incremental plastic strain and stress in terms of the
applied state of stress reduces to,

= 2o 2 ; .
E? ==Sh==h(®)S A (21)
3 3
The inelastic strain components are derived by substituting the yield function
into the flow equation, viz.,
EiD 1 0
EL =] O (22)
2Etp2 2a66512i.
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Using coordinate transformations, the equation for the strain in the X direction can
be derived as,

B = cos’0 EF, + si_n29 EL, —2cos sin® EF,

: 2 .
= 2agg cosO sin@S, A = éhz(e)le (23)

Comparing the above equation with the equation of the effective strain, the
relationship between the effective strain rate and the plastic strain rate component
in the X direction is obtained as,

_, B
h()

(24)

Integrating both sides, the relation between the plastic strain in the X direction and
the effective plastic strain can be obtained, viz.,

= B
h(8)

(25)

The above equations provide a useful relation to characterize the ratio between ef-
fective stress and effective plastic strain.

§ 12 Sx
E;——h (8)—};_; (26)

X

Hence, determining the variation of S, vs. E7 experimentally, the master effective
stress vs. effective plastic strain curve, S vs. E”, is obtained from the above rela-
tion.

Monotonic tension tests are performed on GRP off-axis specimens, shown in
Figure 3, at different loading rates. Off-axis specimens are sliced from 1-inch thick
GRP panels, then cut into different angles with a water-jet cutting machine. Fiber-
glass end tabs are bonded with epoxy to the specimen ends. These end tabs are
strain compatible so as to avoid damage by gripping on the samples.

The experiments are conducted with an MTS servo-hydraulic machine con-
trolled by an Instron 8500 controller which prescribes a constant displacement rate
in order to simulate a constant strain rate experiment. Back-to-back axial strain
gauges (micro-measurement EA-13- 125AC-350) are mounted at the center of the
specimens to measure the strains. The back-to-back mounting helps to examine
bending effects during loading. A hydraulic grip is first applied to the end tabs and
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the grips are aligned so that the longitudinal axis of the specimen coincides with
the direction of the applied load in the plane of the specimen. The test specimens
are held in such a way that sufficient lateral pressure is applied to prevent slippage
between the grip face and the tabs.

Experiments are carried out at five different values of angle 6 between zero and
45°. The displacement loading rate is varied as 0.001 mm/s and 0.1 mm/s. Results
obtained show that thermoplastic composites do not have a well-defined yield
point so that the master effective stress-effective plastic strain curve is described
by a set of two power laws. The experimental results, master curve and the power
law coefficients obtained by curve fitting are given in the next section.

Compression Tests

The response of the woven GRP composite in compression is determined exper-
imentally by applying a compressive load in the plane of the lamina, as well as nor-
mal to the plane, i.e., in the thickness direction. Experiments are carried out with
test specimens of § mm x 8 mm cross-section. Three different heights as 8 mm, 20
mm and 40 mm of the specimen are considered. The compression loading is ap-
plied in a MTS machine through a flat end indenter. A load alignment device is
used to ensure that the load is uniformly distributed across both contact surfaces.
When carrying out the experiments in the plane of the lamina, the load is applied at
0° and 45°, with the fiber directions to maintain loading symmetry. The displace-
ment rate in all the experiments is kept as 0.001 mm/s. The strain gauge signals are
measured with a Wheatstone Bridge and amplifier. The amplifier is set at a fixed
gain of 100. Three experimental parameters, viz., displacement, load, and strain
are recorded in a PC using the software LABVIEW.

Pure-Shear Tests

Coefficient ayy in the plastic yield potential is related to the out-of-plane shear-
ing behavior of the composite. Its value can in principle be identified from pure
shear loading obtained with an Arcan loading fixture, Arcan et al. [21-24], see
Figure 4.

The plastic potential function for a pure shear test in the 1-3 direction reduces to

F(Sy)=auSh (27)

Using the definition of effective stress, the relation between the effective stress
and applied stress can be found as,

S =.3a,S,. =35 (28
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Figure 4. Arcan'’s fixture for shear loading, Arcan et al., 1978.

Applying the flow rule, the strain component in the 1-3 principal materials direc-
tions can be calculated in terms of the applied stress S, ViZ.,

EP, =2a,5;M (29)

with
. P
A= __‘?L (30)
2a44S13

The effective plastic strain rate is related to the strain component S5 by the expres-
sion,
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Er=25) =L (31)
3 3a,

Hence, the relationship between the effective plastic strain and the experimentally
measured strain can be found to be,

El3

3ay,

EP = (32)

The stress and strain relation between the effective values and experimental values
can thus be built as

£_3a44313
EP Ef,

(33)

Having determined the master effective stress S vs. effective plastic strain
E” curve through off-axis tension tests, coefficient ayy 1s easily determined from
the above equation. Hence, a unified visco-plasticity law is defined in terms of ef-
fective stress and strain measures.

Experiments are carried out with the modified Arcan fixture shown in Figure 4.
A salient feature of the modified fixture is the two piece butterfly shaped Alumi-
num holder as shown in Figure 4. GRP specimen sample A is glued to the holder
with FM-1000 (from Cytex company) by placing the film and specimen into a hot
oven. The oven is heated to 175°C within an hour then kept at this constant temper-
ature for another hour. The assembled holder fits concentrically into the fixture to
avoid any eccentricity during loading. It is mounted into the Arcan fixture by
0.25-inch screws that transfer the load to the specimen through the plate. The load
is applied to the fixture at an angle o with respect to the X-direction. Arcan’s fix-
ture is connected to the testing machine by means of pins. These pins allow the ro-
tation of the fixture to avoid load misalignments. In order to ease the constraint of
mounting the small size specimen, A in Figure 4, to the Aluminum holder, a GRP
butterfly specimen, B in Figure 4, is designed to fit directly into Arcan’s fixture
without the need of the Aluminum holder. :

Pure-shear experiments are conducted with an MTS servo-hydraulic system,
applying the load with an angle o. = 0. Three parameters, viz., displacement, load,
and strain are recorded by a PC with LABVIEW. The tests are performed under
displacement control with a displacement rate set at 0.001 mm/sec. Back-to-back
rosette strain gauges (WA-06-125-120) are mounted to measure the strain histo-
ries. These strain gauges are bonded-wired-type gauges with aresistance of 120 Q.
The back-to-back strain gauges help to identify any bending effect. The experi-
mental results obtained from pure-shear and compression-shear tests are given in
the following sections.
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EXPERIMENTAL RESULTS

Various off-axis tension tests, compression tests and pure-shear tests carried out
are summarized in Table 2. The experimental results, master effective
stress-effective plastic strain curve and the values of the parameters are described
below.

Off-Axis Tension Tests

The off-axis tension tests are carried out with five values of 8, viz., 0°, 10°, 20°,
30°, and 45°, and at two displacement loading rates of 0.001 mm/s and 0.1 mm/s.
The gauge length of 100 mm of the specimen gives the strain rate of 10~ and
10-3/sec, respectively. The tensile load is applied monotonically until failure, if
any, or until no appreciable change in the load is observed indicating the onset of
perfectly inelastic flow. In the case of 8 equal to 20°, the loading direction is re-
versed after entering into the plastic regime to test the materials behavior during
unloading. The stress-strain curves obtained from experiments at a strain rate of
10>/sec are shown in Figure 5. The figure shows that the material behaves elasti-
cally when the load is applied along the fiber direction, i.e., 8 = 0° and 6 = 90°.
This justifies neglecting the Sy, and S,, stress components from the plastic poten-
tial function, Equation (10). As 8 increases, the degree of plasticity exhibited by
the material also increases. Maximum plasticity is observed at 6 = 45° degrees. It
is noticed that the material behaves non-linearly from the beginning of the loading.
Moreover, it exhibits non-linear behavior during unloading as well. As shown in
Figure 5, 6 = 20°, complete unloading results in an irreversible strain.

The variation of effective stress § with effective plastic strain E? is obtained
from the experimental data for various values of 6 using Equation (26). The master
effective stress—effective plastic strain curve so obtained is shown in Figure 6. As
the material exhibits non-linearity from the beginning of the loading phase, the
maste: curve is described through two power laws, whose coefficients are
obtained as, A = 3.55 - 102 and n = 3.28 if E” <0.72%, and A = 3.55 - 1035 and
n = 6.78, otherwise.

Figure 7 shows the stress-strain curves for 6 equal to 10° and 30° determined ex-
perimentally at the two strain rates of 10~ and 10-3/sec. It can be seen that the
material does not show considerable rate sensitivity at strain rates below 10~%/sec.

Compression Tests

Compression tests with loading in the plane of lamina were conducted, on sam-
ples with fiber orientations of 0° and 45° with respect to the loading direction, at a
displacement rate of 0.001 mm/sec. In order to minimize the end effect due to in-
clined fibers and obtain pure compressive loading at the center of specimen, sev-
eral height to width ratios are considered in the case of 45° orientation. However,
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Table 2. Summary of quasi-static experiments.

Fiber Specimen
Orientation Dimensions Cross
Vs, (Width x Height x Sectional Displacement
Experiment Loading Thickness) [mm] X Area Rate
Number Mode Direction [mm] x [mm] [Mm x mm] [mm/sec]
T-00-01 Off-Axis 0° 15.9 x 100.8 X 4.2 67.1 T
Tension
T-00-01 Off-Axis 0° 15.9 X 99.7 x 4.2 67.0 1074
Tension
T-00-01 Off-Axis 10° . 15.9 x 100.3 x 4.3 67.7 102
Tension
T-10-02 Off-Axis 10° 16.52 X 101.7 x 1.1 18.6 1072
Tension
T-10-03 Off-Axis 10° 16.47 x 101.4 x 1.1 18.3 1074
Tension
T-20-01 Off-Axis 20° 15.9 x 100.7 x 4.3 67.6 102
Tension
T-20-02 Off-Axis 20° 16.59 x 101.88 x 1.2 19.9 1074
Tension
T-30-01 Off-Axis 30° 15.9 x 101.4 x 4.3 67.62 1072
Tension
T-30-02 Off-Axis 30° 16.5 x 101.1 x 1.14 18.8 1072
Tension
T-30-03 Off-Axis 30° 16.6 x 101.8 x 1.1 17.4 1074
Tension
T-45-01 Off-Axis 45° 16.5 x 100.5 x 1.2 19.8 1072
Tension
T-45-02 Off-Axis 45° 16.15 x 101.2 x 1.25 20.19 1074
Tension
C-00-01 Compression 0° 8.07 x 8.04 x 8.02 64.72 102
C-00-02 Compression 0° 8.06 x 8.07 x 8.03 64.72 1074
C-45-01 Compression 45° 8.03 x 7.99 x 7.99 64 1o
C-45-02 Compression  45° 8.03 x 19.85 x 8.05 64.6 1072
C-45-03 Compression  45° 7.47 x 39.54 x 7.47 55.8 1o
C-45-04 Compression 45° 7.47 x 39.54 x 7.47 55.8 104
C-Z-01 Compression Z Direction 7.88 x 8.01 x 7.98 62.9 1072
C-Z-02 Compression Z Direction 8.03 x 20.09 x 8.05 64.64 1072
PS-00-01 Pure Shear 0° 6 x 31.77 x 9.98 317.06 10~
PS-00-02 Pure Shear 0° 5.98 x 32.35 x 9.98 322.85 104
PS-00-03 Pure Shear 0° 106 x 33.78 x 9.97 336.78 ior*

PS-00-04 Pure Shear 0)c 106 x 33.78 x 9.97 336.78 1074
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Figure 5. Experimental stress-strain curves from off-axis tension tests.
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Figure 7. Experimental stress-strain curves from off-axis loading/unloading tension tests.

due to absence of such end effects in the case of 0° orientation, the specimen height
is kept equal to the width in this case. '

The stress-strain curve for the 45° fiber orientation is shown in Figure 8 together
with the tension test result for the same orientation. It is observed that the material
response under compression is also non-linear from the beginning of the loading.
As the height to width ratio increases, the compressive stress-strain curve con-
verges towards the stress-strain curve obtained by the off-axis tension test for the
same fiber orientation.

The stress-strain curves under compression loading along the fiber direction,
i.e., 0°, obtained at the two loading rates of 0.001 mm/sec and 0.1 mm/sec are
shown in Figure 9. The result obtained from the off-axis tension test for the same
fiber orientation is also shown in the figure. For the gauge length of 8 mm, the two
loading rates give the strain rates of 1.25 - 10~ and 1.25 - 10-2/sec. It is observed
that the material does not have significant rate dependence at the tested strain rates.
During monotonic loading at both loading rates, the stress increases linearly ex-
cept for the outset of loading. The lack of linearity at the early stages of loading is
due to the evolution of the contact traction rather than a true material behavior. A
nonuniform contact pressure is expected from the material hetero geneity and fiber
waviness. The linear increase gives a Young’s modulus of 22 GPa, which is very
close to the one obtained by Chou et al. [25] using ultrasonic wave measurement
technique. A sudden relaxation in stress occurs after reaching the maximum stress
of 190 MPa. This is typical of material instability leading to buckling of the glass
fibers and delamination of the specimen. A secondary increase in stress is ob-
served which shows that the material still possesses resistance after fiber buckling.
Delamination and other failure mechanisms accumulate reducing the stress fur-
ther. The post buckling behavior is different for the two different displacement
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Figure 10. Stress-strain curves from compression tests on the Z-direction.

loading rates. The secondary peak stress value is 95 MPa and 60 MPa for the load-
ing rates of 0.001 mm/s and 0.1 mm/s, respectively. Similarly, the stress reduces to
50 MPa and 10 MPa at a strain of 5 %. It is observed from Figures 8 and 9 that the
response of the tested composite material, in tension and compression, 1s approxi-
mately identical before buckling. The differences observed are within experimen-
tal tolerance and may be neglected.

Figure 10 shows the experimental stress-strain curve obtained from compres-
sion tests when the load is applied normal to the plane of the lamina. Experiments
have been carried out with specimen height of 8 mm and 20 mm. The load is ap-
plied monotonically until failure. It is observed that the stress-strain curve ob-
tained with the two specimen lengths matches within the experimental tolerance.
The test results show that the material response is linear, until failure, under com-
pression along the matrix direction. Based on this experimental observation, the
plastic potential function, Equation (11) is further modified by eliminating the S33
term, 1.€.,

f(S;)= 44 (S35 + 5123) + a665122 (34)

Pure-Shear Tests

Out-of-plane shear and compression-shear quasi-static tests were conducted us-
ing Arcan’s fixture, see Figure 4. The pure-shear tests were conducted by applying
the load along the X axis in order to identify the shear modulus, C3, as well as the
out-of-plane shear parameter used in the anisotropic flow potential function. In the
first set of experiments, test specimen A is used which is mounted on the Alumi-
num sample holder. In the second set of experiments, specimen B is used which is
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Figure 11. Stress-strain curve from pure-shear experiment.

directly mounted on the fixture. The stress-strain curves obtained experimentally,
with specimen (B), are shown in Figure 11. Only specimen B exhibited the desired
repeatability of experimental results.

The stress-strain (T —7) curve shows an inelastic material behavior, under
quasi-static loading, in view that the tangent slope observed in Figure 11 is smaller
than the shear modulus of 9.75 GPa, obtained at the U.S. Army Research Labora-
tory [25] by means of ultrasonic wave measurement. Therefore, it appears that a
not-well defined yield point exists as previously observed in the off-axis experi-
ments. The important feature to note is that the material failed in out-of-plane
shear at extremely small strains. For the sample B tests, the composite broke along
a line connecting screws directly on the composite sample. This is believed to be
the result of defects introduced during the drilling process. The force transferred
through the specimen central cross-section, where the strain was measured by ro-
sette strain gauges, still represents a true material property.

According to the modified flow potential, Equation (34), a4 and agg are the only
parameters in the model. One of these parameters is arbitrary because the potential
is defined up to a constant. The other coefficient needs to be identified from a
multi-axial test involving all the stress components appearing in the flow poten-
tial. Since one of the objectives in the modeling is to define a master curve in the ef-
fective stress—effective plastic strain plane, auy is here determined from Equation
(33). Selecting ags =1, the value of a4 is chosen so that the effective
stress-effective plastic strain curve from out-of-plane pure shear matches with the
master effective stress-effective plastic strain curve. Figure 12 shows the curves
obtained with as4 = 0.5, 1.0 and 2.0. The zoomed region in Figure 12 shows area-
sonable match between the measured shear curve and the master curve when
as, = 1.0. Thus for this particular woven composite, both parameters a4, and age
are adopted to be unity through the numerical simulations.
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Figure 12. Stress-strain curve from pure-shear experiment.

NUMERICAL SIMULATIONS

The 3-D finite deformation anisotropic plasticity model is integrated into the
in-house version of the finite element software FEAP98. The code is used to ana-
lyze the quasi-static test experiments and the ballistic penetration experiments.

Simulation of Quasi-Static Experiments

Numerical analyses were carried out for the quasi-static experiments and their
results are compared with experimental results to verify the anisotropic
visco-plastic model. Quasi-static numerical simulations were carried out to simu-
late off-axis tension tests and a compression test in the matrix direction under
plane stress. The elastic properties, experimentally determined model parameters
and other materials properties used in the plane stress analyses are given in Table
3. The rate independence exhibited by the material under quasi-static loading is
simulated by taking a rate sensitivity parameters m = 50. A Newton-Raphson ap-
proach is used to integrate the non-linear equation of equilibrium. The tangent
stiffness matrix at each iteration is computed numerically.

OFF-AXIS SIMULATIONS

Plane stress analyses of the off-axis experiments are carried out for different
values of 0 to verify the plasticity potential function. As shown in Figure 13, the
full length of specimen, for all five fiber orientations, is discretized into 693 nodes
and 310 6-noded quadratic triangular elements. The nodes at the two ends of the
specimen, shown marked, are specified with zero displacement in the X-direction
to simulate the gripping at the end tabs during loading in the MTS machine. Incre-
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Table 3. Material properties used for plane stress
quasi-static analyses.

C,; =C,, =26.68 GPa
Csyy =13.1GPa
Cyq =Cs5 =4.63 GPa
Ces =4.94 GPa
C,, = 10.94 GPa
Ci3 =Csy =9.756 GPa

m =50
A =3.55¢7%® n,=3.28
A, =3.55¢°, n, =6.78

mental displacements are applied to end nodes in the positive and negative
Y-direction, as shown in Figure 13, at the proportional rate used in the experi-
ments. The stress and strain in the Y-direction at the strain gauge location are re-
corded after solution convergence for each incremental displacement. The strain
gauge used in the experiments, at the center of specimen, has a dimension of 3
mm x 3 mm. As shown in Figure 13, this dimension is approximately matched in
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Figure 13. Finite element mesh and comparison between FEM prediction and off-axis ten-
sion test results.
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the center by two adjacent triangular elements. The Y-direction stress and strain at
the three integration points of the two elements are averaged to compare with the
stress and strain at the gauge location.

Figure 13 shows the stress-strain curve obtained through analyses for the five
values of 8. The experimental stress-strain curves are also shown in the figure for
comparison. The figure shows that the anisotropic plasticity model predicts the
material response in reasonable agreement with the experiment data except for
0 = 10°. The stress-strain curve obtained from the analysis for 6 = 0° matches ac-
curately with the experimental curve. This is expected, as the response of the mate-
rial is linear for the O = 0° orientation. The model over predicts the stress for
0 = 10°. However, the analysis results for higher value of 8, i.e. 20, 30, and 45°, are
in better agreement with the experimental results.

COMPRESSION SIMULATIONS

Analyses were carried out to simulate the compression behavior of the GRP
specimen in the direction perpendicular to the plane of the laminae and to verify
the modified potential function, obtained by eliminating the S3; term, as discussed
earlier. Due to symmetry, only a quarter of the specimen is analyzed as shown in
Figure 14, with 32 six-noded triangular elements. The boundary conditions, dis-
placement rate controlled loading at the specimen edge and the calculation of
stress remain the same as given above. The material properties as given in Table 3
were used in the calculations. Figure 14 shows the stress-strain curve predicted by
the modified flow potential function and its comparison with the experimental re-
sults. It is observed that the model predicts the compressive response of the GRP
composite in agreement with the experimental data. It may be inferred that the
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Figure 14. Finite element mesh and comparison between FEM prediction and compression
test results.
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modified potential function is appropriate for the woven GRP material considered
in this investigation.

Simulation of Ballistic Penetration Experiment

As mentioned earlier, one of the important objectives in developing the
visco-plasticity and contact/interface models, accounting for large displacement
and rotations, interply inelasticity, and matrix delamination, is to attain the capa-
bility of simulating ballistic penetration of GRP composites, which in turn can
provide insight into the role of failure mechanisms in the penetration resistance of
GRP targets. In a parallel experimental activity, Espinosa et al. [4] developed a
novel experimental configuration that can record projectile tail velocity histories
and target back surface out-of-plane motion in penetration experiments. The con-
figuration was used to study the ballistic penetration of the woven GRP composite
plate, Espinosa et al. [4]. The experiments performed with circular rod penetrators
provided information on failure mechanisms, their initiation and evolution, and
their interaction. However, the precise sequence of events and stresses leading to
this failure can only be identified through 3-D numerical simulations of the pene-
tration process, due to inherent anisotropy. In order to provide an experiment that
can be compared with a simple 2-D approximation, Lu [26] performed experi-
ments using a blade-shape penetrator. Based on the planar behavior of the lamina
and neglecting edge effects, the results obtained may be treated as the penetration
response of GRP under 2-D plane strain condition. The integrated code is used to
simulate the ballistic penetration under plane strain using advanced features of
FEAP9S.

The steel penetrator is modeled using a large deformation J-2 flow
visco-plasticity model, Espinosa et al. [17], and each lamina of the GRP target
plate is modeled using the large deformation anisotropic visco-plasticity model.
Moreover, the interface between each lamina is analyzed using an interface/con-
tact model [18]. Due to symmetry, only half of the penetrator and target are ana-
lyzed. The contact/interface properties and the material properties of steel and
GRP considering plane strain are given in Table 4.

CONTACT/INTERFACE ALGORITHM :
Recently, Espinosa et al. [18], proposed a multibody contact/interface algo-
rithm to describe problems such as dynamic delamination in composite materials,
discrete fragmentation of brittle materials, and analysis of material microstruc-
tures. In this case, the interface elements are embedded between laminae along
their interface to analyze the cohesive interaction between the laminae. The tensile
and shear tractions developed by the zero thickness interface element are calcu-
lated from the interface cohesive law. The model assumes that the interface carries
forces that oppose separation and shear between two surfaces until debonding.
The magnitude of these forces is a function of the relative separation and shear dis-
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Table 4. Material properties for 4340 steel, GRP and interface
element under plane strain conditions.

4340 Steel
Elastic Properties
E = 207 GPa Young’s modulus
v = 0.33 Poisson’s ratio
P, = 8000 kg/m?3 Density
¢ = 5350 m/s Longitudinal wave speed

Inelastic Properties

o, = 1.0 GPa Initial yield stress
ef = 0.00483 Reference plastic strain
£0 =1000s™! " Reference plastic strain rate
o=3 Rate sensitivity exponent
B=5 Hardening exponent
GRP

Elastic Properties
po = 1952 kg/m® Density
C1T = C22 = 31 55 GPa
Ca3 = 20.0 GPa C,, elastic anisotropic
C44 = Cs5 = 4.63 GPa composite material
Ces = 4.94 GPa stiffness tensor
Cyp = 15.86 GPa in local coordinates

C13 = 023 =975 GPa

Inelastic Properties

o, = 1.0 MPa Initial yield stress

eb = 0.0001  Reference plastic strain
m = 100 Rate sensitivity exponent
Ay, As, Ny, Ny, @44, 8gg See Table 3

Interface Properties

Tmax = 50 MPa Maximum interface stress
&, = 8.0 um Normal failure separation
& = 8.0 um Tangent failure separation
a=0.1 Tangential weight function

A = 0.001
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placement between the two surfaces. Compressive tractions at the laminae bound-
aries are calculated through the impenetrability condition employed in the contact
model [17,18].

The interface between two laminae is intact until the interface traction reaches a
maximum value. Once the maximum traction is reached, the interface starts failing
and the traction reduces to zero linearly up to a critical displacement jump, i.e.,
k=il

In formulating the cohesive law, a non-dimensional effective displacement

jump is defined by
w, Y Y
A=l 2| +B*| 35
(&) () e

where, u, and u, are the actual normal and tangential displacement jumps at the in-
terface estimated by the finite element analysis, and 8, and &, are critical values at
which interface failure takes place.

For a triangular T — A law, for loading and unloading in the range 0 < AE K

1,
Tn _ E’l Tmax ;Tt = ai max (36)
6n 7\'cr 61 A'r:r

where T,,,, is the maximum normal traction which the interface can develop be-
fore failure and o = p%(5,/8,) is the parameter coupling the normal and shear
tractions, such that B? = G /G;..

It is assumed here that the traction can increase reversible and linearly to its
maximum value 7 = Ty When A = . Beyond A, the traction reduces to zero up
to A = 1.0 and any unloading takes place irreversibly.

For loading in the range A, < A < L

T uﬂ

L T B Y e 1
Bn A1 —lcr)

of,

4 37
S, A1 - A,,) S

Due to irreversibility, loading/unloading in the range 0 <A< A*, where
A* > A, is the last value of A from where unloading took place, is given by

u =A% u 1-A*
y Ty O R S, B e ey 38)
nTCER S A (=R,) o AF (-2 (
For loading in the range A* <A < 1;
T =T 1-A u, 1-A (39)

u
R T — TI = aTmax & mrm o n
S R Y ¢ B 5, M1-X,,)
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Once the actual displacement jump exceeds a specified critical value, the inter-
face elements are assumed to have failed and microcracking is said to have initi-
ated at that interface. Subsequent failure of neighboring interface elements leads
to delamination (see Figure 15).

ADAPTIVE REMESHING

Element distortion inside the laminae as the penetrator advances can reduce the
stable time step of the explicit time integrator to a point where the computation no
longer advances and the field variables are not accurately interpolated. A solution
to this problem is to rediscretize the domain with a new, undistorted mesh, and
continue with the calculation. Adaptive mesh optimization together with a mesh
transfer operator was used for that purpose. This technique consists mainly in an
optimization problem where the aim is to improve the quality of the mesh perform-
ing certain operations over the mesh. The objective function in this case would be
the quality of the elements Q,, where their shapes and sizes are evaluated depend-
ing on the desired size and shape that the mesh requires, viz.,

0, = a, /P, * exp[—p* log* (h,/ h*)] , (40)

where V, is the area, P, is the perimeter, in this case h;, = P,/3, h* is the desired size
of element k and o and P are fixed parameters [27,28]. It is useful to introduce
more elements in those regions of the mesh that are rapidly deforming. This deci-
sion is based on the rate of plastic work, W” =c£” [17,29]. A summary of this
procedure 1s given in Table 5.

Typically, user defined values are: Wrﬁm =0.L, W2, =15, Ahy o= 0.2, Ahyyo =
2.0, finally A,;, = 0.2 mm and A,,,, = 1.0 mm which are given by the dimension of
the problem.

| GRP Composite Complete view

L —

N\ =
NN L
Individual Mesh Adaptivity |
_ laminae Steel
Penetrator

Figure 15. Schematics of composite delamination and mesh adaptivity.
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Table 5. Refinement/coarsening algorithm.

Input: W2, WE..., Pmin, Pmaxe Arer Afgeq, (User defined parameters)

Evaluate W?, (Averaged rate of plastic work of the body)

Loop over elements.

« For each element, e, evaluate W%, (rate of plastic work) and size h.
min

/P
. IF [v”: <WP } (Then = COARSENING)
av

—h* =h* Ahgog,
—IF (h* > hpay) Then h* = h
e ELSE IF(W
wpP

a

> WP ] (Then= REFINEMENT)
v

— B* = h* Ay

— IF (h* < hpin) Then h* = hqgin
e ELSE = NOTHING
Perform Adaptive Remeshing

The quality of the mesh 1 is defined as Q; = minQ;, k € 1. If k is the worst ele-
ment in the mesh (i.e.,Qf <Q, V k), at each iteration the submesh formed
by k and its neighbors (elements sharing a node or an edge with k) is considered.
On this submesh, several operations are virtually performed, until one is found to
yield a better quality. This operation is then really performed. The operations con-
sist in defining a cluster, removing its interior node, and either connecting all the
edges in the cluster boundary to one of the boundary nodes or connecting themto a
node at the center of the cluster. Two types of clusters are considered, edge clusters
are all elements that share some given edge, and nodal clusters are all elements that
share some given node [see Figure 16 (a)]. These operations have been taken from
Coupez’s method [30] and they have been used by Buscaglia and Dari [28] as an
anisotropic mesh adaptivity method.

Although this kind of optimization technique, which is called ropological mesh
optimization, improves the shape of the elements, it does not allow the nodes to
move, and it is highly possible that some elements will end up deformed.

A node-movement optimization algorithm (also called geometrical mesh opti-
mization) has been implemented. The objective function Qo4 1 maximized over
the space of nodal locations. Since the simultaneous optimization of the locations
of all the nodes in a mesh consisting of thousands of elements is obviously intracta-
ble, only the position of those nodes that belong to the worst element of the mesh,
and their nth-order neighbors (with n = 1 or 2) are modified. Since the min func-
tions are non-differentiable this algorithm is based on a node-by-node discrete op-
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Figure 16. (a) Operations allowed inthe topological mesh optimization algorithm. iQworstis
the element with the worst quality. For the case of nodal cluster, inodQ is the node that repre-
sents the cluster. (b) Local geometrical optimization, the node is relocated in different posi-
tions until the cluster or submesh reaches the best quality.

timization method. The optimization is performed independently in each node and
the objective function Q.4 1S the quality of the submesh formed by the elements
that share that node. The quality is evaluated for different positions (or sampling
positions) of the node until it reaches the maximum [see Figure 16 (b)]. A detailed
description of this geometrical mesh optimization algorithm can be found in
References [17,31].

MESH TRANSFER OPERATOR _

Once the mesh is adapted, the solution needs to be transferred from the old mesh
to the new one. This is achieved with the mesh transfer operator presented by
Espinosa et al. [17], which addresses the issues of requirements of static or dy-
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namic equilibrium, consistency with the constitutive equations, compatibility of
the state transfer with the displacement field on the new mesh, compatibility with
evolving boundary conditions and minimization of numerical diffusion of state
variables.

Update of configuration: The model uses a Lagrangian formulation. If a mesh
is rebuilt, but the reference configuration is nor updated, the distortion merely
changes its location from the current configuration to that of the reference. To truly
remove the distortion, the reference configuration must be periodically moved for-
ward to the current configuration. The reference configuration is defined as the
configuration at which the displacements are zero. So part of updating the refer-
ence configuration is setting

$=X+u (41)
i=0 (42)
X=%+0 (43)

wherein X, u, X, and & are the reference particle positions and displacements in
the old and new reference configurations, respectively. The deformation gradient
relates the current configuration to the reference configuration by F = 0x/0X.
However, when the reference configuration is updated, the relation becomes
slightly more complicated. After an update, the deformation gradient expands to

F =1+ g—; (44)
Fe= (1 - 3—;’() (45)

Transfer of variables: State variables in the new mesh are subdivided into two
sets, interpolated and computed variables, see Table 6. For the interpolated set, the
state variables are interpolated in the deformed configuration based upon shape
functions of an auxiliary element connectivity of simple 3-node triangles connect-
ing all of the existing nodes in the old mesh. This sort of interpolation is conducted
for the nodal kinematic quantities as well as for the components of the stress tensor
S and the internal variables Q using an auxiliary mesh obtained by 3-node triangu-
lar elements connecting quadrature points in the old mesh [17].

It should be noted that not all of the variables may be interpolated. If everything
would be interpolated, the stress state after the mesh update would be inconsistent
with the state of displacement. The problem then requires a suitable choice of field
variables to be interpolated and other field variables to be computed to keep the so-
lution stable and consistent with the equations of motion and the material constitu-
tive equations. The deformation gradient F is obtained directly from the interpo-
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Table 6. Interpolated and computed
state variables.

Set of interpolated variables: /(u, v, a, ES, Ef, S™)

» =it =int?

Set of computed variables: C(F, §y, Seom)

lated displacement u. For the interpolated second Piola-Kirchhoff stress tensor Sint
some corrections need to be made in order to preserve the strain rate. Table 7 gives
a summary of those corrections.

Another technique is implemented which allows the nodes on the axis of sym-
metry to separate after they reach the maximum tensile strength of the glass fiber,
approximately 1 GPa. Figure 15 describes the mechanisms implemented in the
code to simulate GRP ballistic penetration. In general, the laminae start breaking
at the impacted face, adaptive remeshing occurs only in the GRP target starting
with the first lamina and continues with the other laminae as the penetrator ad-
vances. In most cases, mesh refinement does not occur in the penetrator what indi-
cates that there is no plastic deformation in the steel.

NUMERICAL SIMULATIONS

In order to make a comparative and systematic study of ballistic penetration,
five cases are analyzed. In the first four cases, an anisotropic visco-plastic model is
used for GRP, assuming the plate to constitute 1, 10, 20 and 40 laminae respec-
tively, as shown in Figure 17. In the last case, GRP plate with 40 laminae is ana-
lyzed using an anisotropic elastic model. In this way, we can analyze whether or
not visco-plasticity and delamination play an important role as absorption energy
mechanisms.

Table 7. Flowchart for the calculation of
variables in set C from the interpolated set I.
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Figure 17. Plane strain 1, 10, 20 and 40 laminae simulation FEM mesh employed in the bal-
listic penetration simulations using the anisotropic visco-plastic model. The fifth mesh repre-
sents the simulations that use 40 laminae using an anisotropic elastic model.
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In some cases the analyses terminated at early stages of the calculation (about
15 usec) due to element distortion. Figure 15 clearly shows how the elements of
the first lamina are likely to suffer severe distortion as the penetrator advances and
the first lamina loses its thickness. These conditions become worse as the number
of laminae increases. Even though the mesh adaptivity technique implemented is
based on the state of plastic deformation of the element, the key point of this algo-
rithm is finding the moment when the calculation becomes inefficient using the
old mesh to require a new mesh. Based on the relationship between the time step
and the maximum frequency of the mesh, the condition currently in use compares
the current time step to a reference value set at the end of the previous remeshing.
In this way, if the time step drops, meaning that at least one of the elements is dis-
torting, the remeshing is triggered.

During the ballistic penetration experiments, the particle velocity at the back
surface of the GRP target was recorded for comparison with numerical simulation
results [26,4]. Figure 18(a) presents the velocity profile obtained using the
anisotropic visco-plastic model with 10, 20, and 40 laminae versus the experimen-
tal result [26]. The analyses predict a 60 m/sec higher peak velocity value. How-
ever, the velocity reduces sharply after the peak value is reached.

Figure 18(b) compares the velocity profile obtained using anisotropic elastic
model with 40 laminae with the velocity profile obtained using visco-plastic
model with 1 lamina and 20 laminae depicting visco-plasticity and delamination.
The velocity profile for the elastic case is shaped by the arrival of an initial com-
pression pulse reaching the maximum velocity of 320 m/sec in 20 usec, followed
by a velocity reduction caused by the separation of central nodes and
delamination, see Figure 17. Comparing the results for one lamina with the case
with 20 laminae, the later dissipates additional energy through delamination, re-
sulting in a reduction of the velocity jump from 160 m/sec to 100 m/sec.

For a better understanding of the energy absorption phenomenon, modes of en-
ergy dissipation are analyzed for each case. The variation in time of the total inter-
nal energy, defined as the sum of elastic and visco-plastic internal energy, is plot-
ted in Figure 19(a). For the calculation with one lamina target without interface
elements, internal energy stored in the target plates is maximum. For multi-lamina
analyses with interface elements, delamination dissipates total energy reducing
the internal energy stored in the target. Even though the internal energy stored in
the penetrator is significantly smaller than the internal energy stored in the target,
their behaviors are similar. |

The kinetic energy of the target [Figure 19(b)] does not show much difference
for 10, 20, 40 laminae compared with the case with one lamina, which explains the
similarity in the velocity profiles (Figure 18).

Figure 20(a) in comparison with Figure 19(a) shows thata significant amount of
internal energy is due to the plastic deformation of the GRP laminae. As the num-
ber of laminae increases, the plastic deformation localizes first in few laminae ab-
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Figure 18. (a) Velocity profiles of 10, 20 and 40 laminae, with GRP visco-plasticity model . (b)

Velocity profiles of delamination study for 40 laminae with elasticity, the case with one lamina
and visco-plasticity in comparison with a multi-laminae case with visco-plasticity.,

sorbing less plastic internal energy than in the cases with a smaller number of
laminae per unit thickness. As expected, the delamination energy increases as the
number of laminae is increased as shown in Figure 20(b).

Another point worth mentioning is the fact that the velocity profile is dependent
on the distance from the target center. It is observed that the velocity decreases sig-
nificantly when the observation pointis moved laterally. This feature is important
because experimental errors of 2-3 mm in the location of the laser beam are possi-
ble, providing a possible explanation for the discrepancy seen in Figure 21.
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Figure 19. (a) Internal energy profiles for 1, 10, 20 and 40 laminae. (b) Kinetic energy profiles
of GRP plate target for 1, 10, 20 and 40 laminae.
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Figure 21. Velocity histories at the target center and locations 2, 3 and 4 mm from symmetri-
cal axis.

CONCLUDING REMARKS

A general 3-D finite deformation anisotropic visco-plasticity model for GRP
composites is presented in total Lagrangian co-ordinates. The plastic potential of
the composite materials is described through a quadratic stress function. The pa-
rameters of the anisotropic constitutive model are determined by off-axis tension,
compression, and Arcan’s shear tests. The model takes into account the tempera-
ture and strain rate dependence into the visco-plastic deformation.

The various tests carried out to determine the parameters of the visco-plastic
model have exhibited many complex behaviors of woven GRP composite after
first failure and need further exploration. However, as mentioned earlier, the pres-
ent homogenized model finds the response of the material up to the onset of mate-
rial instability. The analysis in the post-failure regime needs to be carried out using
additional techniques, e.g., models accounting for fiber buckling. Hence, the
model parameters derived from the test results are adequate to simulate the overall
continuum deformation of FRP composites.

The off-axis tension tests show that the woven GRP composite, considered in
the present work behaves linearly until failure when the load is applied along the
fiber direction. The visco-plasticity exhibited by the material in the plane of the
lamina increases with the increase of the angle between the fiber and loading di-
rection. Also, during off-axis loading, the material exhibits nonlinear behavior
from the beginning of the loading. Hence, the visco-plastic behavior of GRP mate-
rial is contributed mainly by the visco-plasticity in the polymer matrix. Neverthe-
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less, the off-axis tension/compression tests allow the derivation of a master effec-
tive stress—effective plastic strain curve which is highly suitable for numerical
simulations. The master curve so obtained is described by a set of two power laws
in order to characterize the plastic behavior of the composite from the onset of
loading. Separate power laws can be used to describe loading and unloading to fit
the master curve. The off-axis compression tests, with 8 = 45°, show that the mate-
rial behaves identically in tension and compression. These features allow the for-
mulation of a visco-plastic model in the effective stress—effective strain space.

When compression tests are performed along the fiber direction, material insta-
bilities are observed. The stress relaxation observed during these experiments is
due to delamination and fiber buckling. However, buckling is not easily incorpo-
rated in a homogenized visco-plasticity model. Such material instabilities need a
separate treatment, which are not the focus of this paper. However, as observed for
0 = 45°, the instability vanishes as the plastic flow creeps in due to enhanced par-
ticipation of the matrix materials at higher value of 8. Hence, neglecting the insta-
bilities, the woven GRP material behaves identically in tension and compression.

The compression test further reveals that the woven composite has a linear be-
havior until failure when loaded normal to the plane of the lamina. This observa-
tion has allowed the term S5 to be neglected in the plastic flow potential function.
This simplification, based only on the compression tests results, is appropriate due
to limited strength of the composite materials in tension along the thickness direc-
tion. For example, compared with the compressive strength of over 500 MPa de-
termined here, the delamination tensile stress of the composite is 30-50 MPa [32].
Hence, the modified plastic potential appears appropriate to describe the large de-
formation of the woven GRP composite under general loading.

The material shows a very limited strength of about 3 MPa in out-of-plane pure
shear as obtained by tests performed with Arcan’s shear fixture. It should be men-
tioned again that out-of-plane shear experiments performed with Arcan’s shear
fixture are highly delicate due to the limited strength of the material in shear and
bending. A slight eccentricity or bending of the specimen, during the experiment,
causes faulty readings or even breakage of the GRP specimen. The experimental
results given here are few out of several unsuccessful attempts in this regard. Great
care was required to conduct the experiment successfully. It has to be emphasized
that a combined loading test involving all the stress components present in the
flow potential needs to be conducted to verify the model parameters obtained
through the off-axis and shear tests. Unfortunately, such tests require a very com-
plex loading device. For this reason, it has not been pursued in this work and re-
mains one of the core objectives of future research work.

Depending on the matrix material, other functional forms for describing the ply
inelasticity may be needed, e.g., visco-elastic representation would also be feasi-
ble. For the purpose of simulating ballistic penetration of GRP composites, it has
been assumed in the present work that a visco-plastic description can adequately
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capture the GRP material response in a macroscopic sense, i.e., plies inelasticity
(matrix cracking, fiber debonding, matrix inelasticity) is represented by the model
here described, while interply delamination is modeled by means of cohesive/con-
tact laws.

The anisotropic visco-plasticity model has been integrated with the in-house
version of the finite element code FEAP98. The analyses carried out for the
off-axis tension tests and compression tests show that the model is able to predict
the GRP response in confirmation with the experiments. The integrated model has
subsequently been used to study dynamic delamination in woven GRP composite
[18]. The simulations are very much in agreement with the available plate impact
experimental data.

The finite deformation anisotropic plasticity model is used with the inter-
face/contact model and mesh adaptivity to study energy dissipation during ballis-
tic penetration of the GRP plate. The simulations with 10, 20 and 40 laminae show
a reasonable agreement with the profile obtained experimentally. Compared with
the elastic analysis with no interface elements, anisotropic visco-plasticity model
with delamination and mesh adaptivity presented the best agreement with the ex-
perimental velocity history. The difference observed between the simulation re-
sults and the experimental results still presents the necessity of modeling addi-
tional failure mechanisms and wave dispersion. It is known that GRP materials
have alayered composition within each ply, see Reference [18]. As aresult, signif-
icant wave dispersion is observed in plate impact experiments, see Espinosa et al.
[18]. In the present analyses, wave dispersion resulting from material heterogene-
ity was not accounted for. Future research should address this feature within the
framework of continuum homogenized models.

Mesh adaptivity for this kind of simulation is still a challenge and further im-
provements are necessary to resolve the early termination of some calculations.
Since the time step is not directly connected with the spatial coordinates,
remeshing should be done when the error due to spatial discretization becomes
highly significant. Several approaches are possible, the use of error estimates
based on error norms on stresses or strains computed in the finite element mesh, or
the use of distortion criteria characterizing the geometrical deformation of the ele-
ment. ;

The finite deformation anisotropic visco-plastic model, presented here, can be
used for any unidirectional or bidirectional fiber reinforced composite material.
The model parameters in the visco-plastic potential function need to be
determined for the particular material under consideration. Our experiments have
shown that the material is in-sensitive to strain rate in the loading range of 0.001
mm/s to 0.1 mm/s. Efforts are currently afoot to carry out experiments with a
Kolsky bar to study the material rate dependence in the strain rate range 100—
1000/sec which is generally encountered during impact and penetration.
Out-of-plane plate impact shear tests, at strain rates of the order of 10°/sec, were
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performed by Espinosa et al. [33]. Similarly, additional work is required to assess
temperature effects on the material visco-plastic response.

It is expected that the proposed model and the dynamic delamination model dis-
cussed in Espinosa et al. [18] would provide a valuable computational tool for the
analysis of inelasticity of fiber composites used in automotive, aerospace and de-
fense industries.
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